Tutorial on Writing Modular Programs in Scala

Accompanying Documentation

Martin Odersky

Gilles Dubochet

13 September 2006 (document revised 27/9/2006)

Abstract

Scala is a JVM-compatible programming language
that combines features of both object-oriented and
functional languages. It can express common pro-
gramming patterns in a concise, elegant and type-
safe way.

Scala’s rich type system supports multiple inher-
itance (through mizins), polymorphic methods and
classes (generics), implicit type-directed transforma-
tions (views) and more. Besides, Scala allows anony-
mous functions and pattern matching on objects.

This tutorial is an introduction to the Scala pro-
gramming language. In particular, participants will
discover how Scala’s features can alleviate the short-
comings found in today’s object-oriented languages
when designing modular systems.

Introduction

This is the accompanying documentation to the Scala
tutorial given at the Joint Modular Languages Con-
ference 2006 in Oxford. It describes the “hands-on”
part of the tutorial.

At the end of this tutorial, attendants should be
able to take home the following:

e some principles and programming abstractions
common to modular applications in Scala and

e experience in writing Scala programs by develop-
ing a toy project that demonstrates these prin-
ciples.

This tutorial is based on the material covered by
the tutorial talk. Slides are available at the same
place this document is located. The Scala reference
manual [3] is also a useful tool for this tutorial. The
Scala API, found at scala.epfl.ch/docu/files/api/,
can be used without moderation.

1 Meeting Scala

We provide an all-in-one package containing the
source code of the tutorial’s project, and an au-
tomated build script. You can download it from
scala.epfl.ch/docu/related.html. You will need to
have Apache Ant (ant.apache.org) available for build-
ing.

This tutorial’s project is called Skeb and, in the
end, should become a simple Excel-like spreadsheet
application. After unpacking it on your computer,
you should be able to compile it by simply typing
ant while in its root folder. To execute Skeb’s main
object skeb.application, run
bin/scala skeb.application

To start this tutorial, have a look at the classes that
are provided. Try printing something from Skeb’s
main object skeb.application by simply adding a
Console.print(...) call to the object’s constructor.
Try creating a simple class yourself and create an in-
stance from the main object. Add some members to
the class and see how you can define methods inside
other method’s bodies. If you feel playful, confirm the
body of the class is indeed its constructor by printing
something in there.



Once you have come to believe that Scala is indeed
nothing more than Java in disguise, we will be able
to proceed to later phases of this tutorial to show you
how wrong this is.

2 Pattern matching

In this section, you will write a simple interpreter for
Skeb expressions using pattern matching. Expres-
sions are defined by the case class hierarchy in the
skeb.expression module.

Since case classes are used, it is possible to define
the interpreter as an external module, without mod-
ifying the expression hierarchy at all. Contrast that
with the encapsulated approach traditional OO lan-
guages would require.

The interpreter will be implemented as class
skeb.Evaluator based on the following template.
class Evaluator {

/#*#% Reduces an expression to its simplest

* constant value. =/

def eval (exp: Expression): Constant = ...
}

You will use a match expression to differentiate be-
tween the various kinds of expressions that must be
evaluated. Take advantage of all types of patterns:
de-constructor patterns, type patterns and, if neces-
sary, guards. For Apply nodes, define the + and -
operations only; we will change that later anyway.

Once the evaluator is working, you can try it on
some expressions:

(new Evaluator).eval(Number(34))
(new Evaluator).eval(Apply("+",
List (Number(11), Number(6))))

3 Functions

In the previous section, the interpreter dealt with
operation application by explicitly matching on the
string name of the operation. Unfortunately, this re-
quires to change the interpreter method every time a
new operations is added. In this section, we will take
the responsibility of applying operations out of the
interpreter.

Instead, class Evaluator will be extended by a map
that, for every known operation name provides a
function to evaluate it.
type Evaluator = List[Constant] => Constant
val operations: Map[String, Evaluator] =

new HashMap[String, Evaluator]()

Once this is done do the following.

e Modify the eval method to look-up operations in
the map, and apply the corresponding function
to the parameters.

e Make sure you handle the case where the opera-
tion is not defined.

e Define some operations and add them to the
map. Make sure the functions implementing
them test for the number of arguments they re-
ceive, for example by using pattern matching.

e Test your system.

Since functions are objects, and since the Evaluator
class does provide function-like behaviours (“evalu-
ate” would be a rather natural function), we will try
transforming the Evaluator object into a first class
function.

To do that, simply define Evaluator to extend the
correct Function class and define an apply method.

Spreadsheet cells will need to evaluate the expres-
sions they contain. Now that we have an evaluate
function, this should be easy.

e Declare an instance of an Evaluator function in
the Cell class,

e and use it to calculate the value of the cell.

As of now, with cells capable of evaluating their
content, the spreadsheet should start working. Go
ahead and try it: run the skeb.application object.

4 Mixins

We will have a look again at the way operations are
handled in the Evaluator. The current solution is
more elegant than the first try — where absolutely
everything was merged in the evaluation method —



but still lacks true modularity. Adding a method re-
quires updating the Evaluator class.
In this section we will use mixins to

e separate the declaration of operations and the
evaluator itself in different classes

e and show how the actual configuration can be
selected at instance-creation time.

You will need to do the following.

e Create a trait skeb.operation.Arithmetic and
move all operation definitions you create previ-
ously there.

e Notice how the Arithmetic trait must depend on
the Evaluator class to compile successfully. Ei-
ther defining the trait as a subclass of Evaluator
or “require” it.

e Mixin the Arithmetic trait into the Evaluator
class when you create an instance (that is in the
Cell class).

Once this is done, define some more traits that add
operations, such as

e a module providing additional mathemati-
cal functions (financial, algebraic, trigonomet-
ric,. . . ),

e an encryption module for ROT-13 encoding and
decoding string data,

e or whatever else you like.

Mix them into your cells: adding functionality in a
purely modular fashion is easy and straightforward.

5 Higher-order Functions

In this last section, we will use all techniques seen
before to improve the performances of Skeb. The
naive implementation for calculating the value of
a cell means that whenever its value is requested,
all expressions of all cells it depends on will be re-
evaluated. In order to improve that, we will buffer
each cell’s value so as not to recalculate it each time.

The problem is that if the value of a cell refer-
enced (even indirectly) by the current cell changes,
the buffered value will be wrong. We therefore need
to inform a cell to update its value (clear its buffer)
whenever any cell it depends on is updated.

To do that, we will use a publish/subscribe event-
forwarding mechanism provided by the Scala GUI
package. This system allows elements to receive
events published by other elements they subscribed
to. The scala.gui.Publisher class implements the
necessary mechanism. The relevant part of its public
and inherited interface follows.
abstract class Publisher extends Actor[Any] {

/#% An event requesting a subscription to this

% publisher. */
protected case class Subscribe(
subscriber: Publisher) extends Event
/##% An event requesting a un-subscription to this
% publisher. */
protected case class Unsubscribe(
subscriber: Publisher) extends Event

/%% The type of an event handler. =/

type Handler = PartialFunction[Any, Unit]

/#% The top level of the subscriber’s event loop.

% This is the default event loop for this

* element. #/
object toplevel {

def eventloop(handler: Handler): Unit
}

/#% Installs a new handler for incomming

* events. */
final def eventloop(handler: Handler): Nothing
/#% Subscribes onself to the list of publishers,

* S0 as to receive further events from them. */
def
/#% Un-subscribes onself from the 1list of

subscribe(publishers: Publisher=): Unit

*+ publishers, so as not to receive further

* events from them. +*/
def Unit
/*#+ Publishes the event to all subscribers. */
def publish(event: Event): Unit

unsubscribe(publishers: Publisher=):

}

The important concept to understand in this class
is that of its event loop. An event loop is a partial
function — a function which domain does not cover
all possible values of its input type — that will be



applied to any incoming event. If the event is in the
domain of the function, it will be executed, other-
wise, nothing will happen. In all cases, the partial
function will be “re-loaded” and execute again for the
next incoming event: the event loop is in effect an
infinitely recursive function.

The eventloop function of the subscriber class in-
stalls the provided partial function (of type Handle)
as the current event loop for the subscriber. An-
other call to eventloop will replace it with the new
one. For implementation reason, the first event loop
of the subscriber must be installed using the toplevel
version of eventloop. Don’t forget to subscribe to any
publisher you wish to receive events from, they won’t
arrive otherwise.
val top =

case Scared => turnWhite

toplevel eventloop {

case Sick =>
turnGreen
eventloop {
case SawDoctor =>
turnPink
eventloop(top)
case Scared => turnYellow

}
The transformation you need to do in Skeb is as
follows.

e Define Cell as an event publisher (which also
makes it a subscriber).

e Modify the value member of the Cell class to
lazily calculate itself. You can use a value of
type Option to differentiate between an existing
and a not-yet-calculated value.

e When the user sets a new expression for the cell,
subscribe to all cells that are referenced by the
expression, in order to be informed of their up-
dates. Don’t forget to unsubscribe from cells
that are no longer relevant with the new expres-
sions.

e Publish the fact that the cell’s value changed to
all other cells that depend on it.

e Define an event loop to handle value change
events by resetting the cell’s value buffer.

Conclusion

This tutorial did by no means cover all modular-
friendly features that Scala offers. The following pa-
pers might be relevant. Odersky’s and Zenger’s [5]
describes how Scala’s type members allow removing
hard links between program parts and in effect mod-
ularise them. Odersky’s [2] covers much of what this
tutorial discusses in two short pages. Burak’s and
al [1] describe how Scala’s XML library can be used
for easily defining XML-defined components. But in
the end, you will only appreciate how module-friendly
Scala is by trying it out for your own projects.
For more on general Scala programming, try [4].

References

[1] B. Emir, S. Maneth, and M. Odersky. Scalable
programming abstractions for XML services. In
Dependable Systems: Software, Computing, Net-
works, pages 103-126, 2006.

[2] M. Odersky. The Scala experiment — can we pro-
vide better language support for component sys-
tems? In Proceedings of the 33rd Symposium on
Principles of Programming Languages, pages 166—
167, 2006.

[3] M. Odersky. The Scala Language Specification
2.0. Ecole polytechnique fédérale de Lausanne,
Switzerland, March 2006.

[4] M. Odersky et al. An overview of the Scala pro-
gramming language, second edition. Technical
Report LAMP-REPORT-2006-001, Ecole Poly-
technique Fédérale de Lausanne, 2006.

[5] M. Odersky and M. Zenger. Scalable component
abstractions. In Proceedings of the 20th Confer-
ence on Object-Oriented Programming, Systems,
Languages and Applications, 2005.



