
Tutorial on Writing Modular Programs in Scala

Martin Odersky and Gilles Dubochet

13 September 2006

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 1 of 45



Welcome to the Scala tutorial at JMLC 2006

A half-day tutorial on the Scala programming language.

A rapid, no-frills, presentation of Scala as a language for
writing modular programs.
For Java or related programmers.

Be advised, you will work too: this is an interactive hands-on
tutorial: get your computer ready!

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 2 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

This afternoon’s plan

1 Meeting Scala

2 Pattern matching

3 Functions

4 Mixins

5 Higher-order Functions

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 3 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

Scala vs. Java

At first glance, Scala is similar to Java (or C]).
or rather everything Java has to offer can be found in Scala.

Scala is object-oriented, statically typed, throws exceptions,
etc.
Scala’s syntax will look familiar to Java programmers.
Scala compiles to Java bytecode: it runs on any JVM.
Scala even shares Java’s libraries: all classes and methods
defined as a Java libraries are transparently accessible from
Scala code.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 4 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

The two following classes have the same behaviour.

In Java:
class PrintOptions {

public static void main(String[] args) {

System.out.println("Opts selected:");

for (int i = 0; i < args.length; i++)

if (args[i].startsWith("-"))

System.out.println(

" "+args[i].substring(1));

}

}

In Scala:
class PrintOptions {

def main(args: Array[String]: Unit) = {

System.out.println("Opts selected:")

for (val arg <- args)

if (arg.startsWith("-"))

System.out.println(

" "+arg.substring(1))

}

}

You might notice some similarities.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 5 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

Basic differences

This first section will describe some basic differences between Scala
and Java you need to be aware of.

These include
syntactic differences,
different class member definitions,
a purely object model and differences in the class model.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 6 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

Syntactic differences

Scala uses an identifier-colon-type notation for member or
parameter definitions.
int age (String name) becomes
def age (name: String): Int

Semi-colons are optional.
There is no pre-defined syntax for for loops. Comprehensions
are provided instead.
Blocks such as {...} are required only to group statements.
Single expressions can be defined outside a block.
def x = if (p) a else b is a legal declaration.
All definitions can be arbitrarily nested.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 7 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

Everything is an object

All native types (int, double, bool) are classes, define methods
etc., but

they are not passed as references,
they are subclasses of AnyVal (as opposed to other classes that
extend AnyRef).

Arrays are objects and array-specific syntax does not exist (c.f.
API).
The void pseudo-type is replaced by the Unit class. Instances
of Unit can be created with ().

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 8 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

A new class hierarchy

scala.Any

scala.AnyRef
(java.lang.Object)scala.AnyVal scala.ScalaObject

scala.Double

scala.Float

scala.Long

scala.Int

scala.Short

scala.Byte

scala.Char

scala.Unit

scala.Boolean
scala.Seq

scala.List

scala.Option

… (other Scala classes)…

java.lang.String

… (other Java classes)…

scala.Null

scala.Nothing

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 9 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

The object value

Objects can even be created as such, without defining a class.
object Scala extends Language { val creator = LAMP }

Objects replace the singleton pattern,
There are no static members, instead objects can be created
directly.
An object with the same name as a class is called companion
module and can access private class members.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 10 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

Richer class members

Java only allows fields and methods in classes. Scala has a richer
semantic for class members.

def defines a method. Parameters are allowed, but optional.
def f(a: Int): String or def f: String are legal definitions.
val defines a constant value. A value can also override a (non
parameterized) def.
This is required for writing “functional” (i.e. invariant) classes.
var defines a variable, like a Java field.
object and class are legal members in a class.
type members also exist but will not be covered in this tutorial.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 11 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

Class body as constructor

In Java, constructors are special (smalltalk-ish) methods. Scala has
a different approach.

The class or object body is executed at instance creation.
Class declarations have parameters.

class Human (soul: Soul) {

soul.insufflate(creator.getLife)

}

val me = new Human(new Soul)

This is the primary constructor, others can be defined as
def this (...) = ...

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 12 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Scala as a Java clone
Pushing the envelope
Hands-on

Hands-on

You will now test some of the described concepts yourself.
Installing and running Scala.
Creating classes and objects.
Using constructors.
And generally getting familiar with the Scala syntax.

The accompanying documentation describes your task in more
detail.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 13 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

Class hierarchies as ADT

OO languages use class hierarchies for representing data types.
Content is encapsulated in the object and accessed through
methods.

Algebraic data types are a common concept in functional
languages.

Data is accessed through decomposing the value by pattern
matching.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 14 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

ADT and class hierarchies have complementary strength and
weaknesses.

ADTs allow easy extension of operations supported by the data
while class hierarches allow easy addition of data variants.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 15 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

Scala case classes

ADTs can be encoded using case classes.
Case classes are like normal classes.
Instance constructors can be recovered by pattern matching.
Structural equality is used for comparison.
The new keyword is optional for instance creation.

case class ClockTime (hour: Int, min: Int) is a valid case class
definition. ClockTime(10,30) creates an instance.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 16 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

Scala’s pattern matching

A case class can be decomposed using a match construct, like the
following.
time match {

case ClockTime(hour, min) => ...

case SwatchTime(beats) => ...

case Sunset => ...

case Sunrise => ...

}

All lower-case identifiers in the pattern will bind the decomposed
value and are available on the right-hand side of the pattern.

Order is important: a first-match policy is used.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 17 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

Constant values can be used in patterns to restrict matching.
case ClockTime(10, min) will only match any time in the 10th hour
(and bind minutes to min).
case "ten o’clock" will match the ten o’clock string.

A name starting with a capital letter will also be treated as a
constant.
case ClockTime(Ten, min) will behave as above if Ten == 10.

Richer conditions can be defined with guards.
case ClockTime(hour, min) if hour > min is a guard.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 18 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

When no pattern matches a value, the match statement throws a
MatchError.

A default case can be added, using the wildcard pattern.
case _ will match any value.

Wildcards can also be used as a component of a pattern.
case SwatchTime(_) will match any time defined in Swatch-beat
time.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 19 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

Pattern matching without case classes

Scala’s patterns even extend to non-case classes.
case x: String will bind x (of type string) to any value of type
string.

Of course, deconstruction isn’t available on type patterns.
Instead, this is a rich way to do type casts or type tests.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 20 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Case classes
Matching on case classes
Hands-on

Hands-on

You will now test some of the described concepts yourself.
Matching on case-class ADTs.
Matching on values.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 21 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Functions
Functions for modularisation
Hands-on

Functions

Scala supports lightweight syntax for anonymous functions.
(x: Int) => x + 1 defines a successor function on integers.

Functions are first-class values, and can be stored or passed.
val succ = (x: Int) => x + 1

succ(44) applies the successor function an returns 45.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 22 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Functions
Functions for modularisation
Hands-on

Lifting functions

A method can easily be transformed into a function
by not providing it with its parameters,
and by flagging it with a &.

class Number (value: Int) {

def add (other: Number) = ...

}

Can be used as a function value in unrelated code
val addOne = &new Number(1).add

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 23 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Functions
Functions for modularisation
Hands-on

Functions as objects

As mentioned earlier, Scala is purely object-oriented.
Since functions are values, they must be objects too.

A function is instance of class Function0 or Function1 or . . .
There exists one function class for all number of parameters.
A class (or object) implementing FunctionX must define an
apply method with the correct number of parameters.

object addOne extends Function1[Int, Int] {

def apply(num: Int): Int = num + 1

}

addOne(23) will return 24.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 24 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Functions
Functions for modularisation
Hands-on

The type of function

A shorthand syntax for writing the type of functions also exists.
Function0[Int] becomes () => Int

Function1[String, Person] becomes String => Person

Function2[Int, Int, Int] becomes (Int, Int) => Int

Int => Int => Int is Function1[Int, Function1[Int, Int]]

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 25 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Functions
Functions for modularisation
Hands-on

Taking advantage of function

A functional programming style offers real benefits for modular
programs.

A module can be parameterized by function, not only by state.
Functions can be passed from module to module.

Scala’s functions-as-objects allow an easy integration of functions
in a traditional OO environment.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 26 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Functions
Functions for modularisation
Hands-on

Functional programming style

Writing in functional style can be difficult for seasoned OO
programmers.

Behaviour is no longer attached to an object but moves freely.
State becomes less important: there are no methods
depending on it.
Immutable objects become natural: why deal with state when
a function can simply return a new object?

In other words, use state sparingly in Scala, functions and
immutable objects (think val) help structure messy code.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 27 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Functions
Functions for modularisation
Hands-on

Hands-on

You will now test some of the described concepts yourself.
Use functions as values.
Define anonymous functions.
Turn a class into a function.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 28 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Mixin inheritance
Using traits
Hands-on

Modular systems with single inheritance

In single class inheritance languages
merging behaviours of different classes (or modules) is tricky,
adaptor code is required,
which make the relation brittle.

Often, module reengineering is required.

Java’s interfaces provide some help, but are clearly insufficient.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 29 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Mixin inheritance
Using traits
Hands-on

Mixins

Full multiple inheritance is often too complex to be of great use.

Scala provides mixins as a compromise.
A class can inherit from multiple traits.
A trait is a special kind of class which implements some
behaviour.
There must be a common parent class with the inherited mixin.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 30 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Mixin inheritance
Using traits
Hands-on

Mix-ins?

Vehicle

Flying Diving Car

JamesBondsCar

Vehicle

Car

JamesBondsCar

Flying

Diving

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 31 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Mixin inheritance
Using traits
Hands-on

Traits

A trait is defined like a class, but using the trait keyword instead.
trait Flying extends Vehicle {

def takeOff = ... // concrete

def land: Unit // abstract

}

All members inherited from Vehicle can be used:
this trait will eventually be mixed-in with a class extending Vehicle.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 32 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Mixin inheritance
Using traits
Hands-on

Inheriting traits

A trait can be inherited
when defining a class
class JamesBondsCar extends Car with Flying with Diving

or when creating an instance.
val jbsCar = new Car with Flying with Diving

When a class only extends mixins, it will automatically also extend
AnyRef.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 33 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Mixin inheritance
Using traits
Hands-on

Requiring a behaviour

When multiple traits are inherited
they can refer to members of their common super class,
but not to members of other mixed-in traits.

A trait can require another class or trait;
it can only be mixed-in when the requirement is available.
trait Reading extends Person requires Seeing

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 34 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Mixin inheritance
Using traits
Hands-on

Hands-on

You will now test some of the described concepts yourself.
Define traits for mixin.
Mixin these traits into instances to inherit behaviour.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 35 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Defining higher-order function
Higher-order functions on lists
Hands-on

Higher-order functions

A higher-order function is a function (or a method) that takes
another function as parameter.

def order(

data: List[Thing],

lessThan: (Thing, Thing) => Boolean

) = ...

This method orders a list of things.
But since order on things is not well-defined, order is parameterized
as a function.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 36 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Defining higher-order function
Higher-order functions on lists
Hands-on

There is nothing more to it.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 37 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Defining higher-order function
Higher-order functions on lists
Hands-on

Higher-order functions on lists

But the real deal with higher-order functions is their use in lists
(and other container structures).

Lists are the most common container structures.
“For every element of the list do . . . ” is a natural task.
This requires the definition of the operation to apply on each
element.
Which means: higher-order function.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 38 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Defining higher-order function
Higher-order functions on lists
Hands-on

Map, Flat map and Filter

The scala list class defines a number of usefull higher-order
functions.

For a list of type A

def map[B](f: (A) => B): List[B] will apply f to all elements
of the list, and return the resulting new list.
def flatMap[B](f: (A) => List[B]): List[B] will apply f to
all elements of the list, and concatenate all resulting lists into
one flat list.
def filter(p: (A) => Boolean): List[A] will return a new list
containing only those elements that are true for predicate p.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 39 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Defining higher-order function
Higher-order functions on lists
Hands-on

For-comprehensions

Java’s for loops are replaced in Scala with comprehensions.
A comprehension will loop on all elements of a list.
for (val e <- List(1,2,3)) print(e) prints “123”
A comprehension can return a new list.
for (val e <- List(1,2,3)) yield e * 2 returns List(2,4,6).
A comprehension can filter its elements.
for (val e <- List(1,2,3); e.isEven) yield e returns
List(2).
A comprehension can have multiple loops.
for (val e1 <- List(1,2); val e2 <- List(2,3)) yield e1 * e2

returns List(2,3,4,6).

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 40 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Defining higher-order function
Higher-order functions on lists
Hands-on

For-comprehensions are entirely made out of higher-order functions
on lists.

A for-comprehension
for {

val i <- 1 to n

val j <- 1 to i

isPrime(i+j)

} yield Pair(i, j)

and the code it gets turned into.
(1 to n).flatMap {

case i => (1 to i)

.filter { j => isPrime(i+j) }

.map { case j => Pair(i, j) }

}

Which means they can be used on any class that supports map,
flatmap and filter.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 41 of 45



Meeting Scala
Pattern matching

Functions
Mixins

Higher-order Functions

Defining higher-order function
Higher-order functions on lists
Hands-on

Hands-on

You will now test some of the described concepts yourself.
Using for-loops or other higher-order functions on lists.

As this is the last hands-on section, we will also reuse everything
else we discussed in a grand finale.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 42 of 45



To conclude: the Scala tutorial at JMLC 2006

We hope you did enjoy this tutorial.

We would like you to be able to take back the following.
A good idea as to how pattern matching, mixins and first-class
functions can improve the modularity of an OO language.
A feel for the kind of programming that Scala permits, and
how useful it is.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 43 of 45



To conclude: Scala and modular programs

Scala is a fairly complex language with many features.

But this complexity can be put to good use
because it allows modularising more
in a safer way and
in a more reusable way.

Scala’s seamless and complete integration of functional and OOP
features is the key to its success.

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 44 of 45



Get Scala for yourself

Scala is open source and available free of charge.

For downloads, example code, libraries, discussions, etc., visit the
Scala website at http://scala.epfl.ch

Tutorial on Writing Modular Programs in Scala Martin Odersky and Gilles Dubochet 45 of 45


	
	Meeting Scala
	
	
	

	Pattern matching
	
	
	

	Functions
	
	
	

	Mixins
	
	
	

	Higher-order Functions
	
	
	


	

