
An Introduction
to Scala

Version 1.5
January 15, 2007

Martin Odersky
Vincent Cremet
Iulian Dragos
Gilles Dubochet
Burak Emir
Sean McDirmid
Stéphane Micheloud
Nikolay Mihaylov
Lex Spoon
Matthias Zenger

PROGRAMMING METHODS LABORATORY

EPFL
SWITZERLAND

Contents

The Scala Programming Language . 1
Abstract Types . 3
Attribute Clauses . 5
Case Classes . 8
Classes . 10
Predefined function classOf . 11
Compound Types . 12
Sequence Comprehensions . 13
Currying . 15
Nested Functions . 16
Anonymous Function Syntax . 17
Generic Classes . 18
Higher-Order Functions . 19
Implicit Parameters . 20
Local Type Inference . 21
Inner Classes . 23
Lower Type Bounds . 25
Mixin Class Composition . 26
Operators . 28
Packages . 29
Pattern Matching . 30
Polymorphic Methods . 31
Regular Expression Patterns . 32
Explicitly Typed Self References . 33
Subclassing . 36
Automatic Type-Dependent Closure Construction 37
Traits . 39
Unapply methods . 40
Unified Types . 42
Upper Type Bounds . 44
Variances . 45
Views . 47
XML Processing . 49

The Scala Programming Language 1

The Scala Programming Language

Scala is a modern multi-paradigm programming language designed to express com-
mon programming patterns in a concise, elegant, and type-safe way. It smoothly
integrates features of object-oriented and functional languages.

Scala is object-oriented

Scala is a pure object-oriented language in the sense that every value is an object.
Types and behavior of objects are described by classes and traits. Class abstractions
are extended by subclassing and a flexible mixin-based composition mechanism as
a clean replacement for multiple inheritance.

Scala is functional

Scala is also a functional language in the sense that every function is a value. Scala
provides a lightweight syntax for defining anonymous functions, it supports higher-
order functions, it allows functions to be nested, and supports currying. Scala’s case
classes and its built-in support for pattern matching model algebraic types used in
many functional programming languages.
Furthermore, Scala’s notion of pattern matching naturally extends to the process-
ing of XML data with the help of right-ignoring sequence patterns. In this context,
sequence comprehensions are useful for formulating queries. These features make
Scala ideal for developing applications like web services (external link) .

Scala is statically typed

Scala is equipped with an expressive type system that enforces statically that ab-
stractions are used in a safe and coherent manner. In particular, the type system
supports:

- generic classes,

- variance annotations,

- upper and lower type bounds,

- inner classes and abstract types as object members,

- compound types,

- explicitly typed self references,

- views, and

- polymorphic methods.

A local type inference mechanism takes care that the user is not required to anno-
tate the program with redundant type information. In combination, these features
provide a powerful basis for the safe reuse of programming abstractions and for the
type-safe extension of software.

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://en.wikipedia.org/wiki/Web_services
http://scala.epfl.ch/
http://scala.epfl.ch/

2 An Introduction to Scala

Scala is extensible

The design of Scala acknowledges the fact that in practice, the development of domain-
specific applications often requires domain-specific language extensions. Scala pro-
vides a unique combination of language mechanisms that make it easy to smoothly
add new language constructs in form of libraries:

- any method may be used as an infix or postfix operator, and

- closures are constructed automatically depending on the expected type (tar-
get typing).

A joint use of both features facilitates the definition of new statements without ex-
tending the syntax and without using macro-like meta-programming facilities.

Scala interoperates with Java and .NET

Scala is designed to interoperate well with popular programming environments like
the Java 2 Runtime Environment (JRE) and the .NETFramework (CLR). In partic-
ular, the interaction with mainstream object-oriented languages like Java and C#is
as smooth as possible. Scala has the same compilation model (separate compi-
lation, dynamic class loading) like Java and C#and allows access to thousands of
high-quality libraries.

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://java.sun.com/j2se/desktopjava/jre/
http://msdn.microsoft.com/netframework/
http://scala.epfl.ch/

Abstract Types 3

Abstract Types

In Scala, classes are parameterized with values (the constructor parameters) and
with types (if classes are generic). For reasons of regularity, it is not only possible
to have values as object members; types along with values are members of objects.
Furthermore, both forms of members can be concrete and abstract.
Here is an example which defines both a deferred value definition and an abstract
type definition as members of class Buffer.

abstract class Buffer {

type T

val element: T

}

Abstract types are types whose identity is not precisely known. In the example
above, we only know that each object of class Buffer has a type member T, but the
definition of class Buffer does not reveal to what concrete type the member type T

corresponds. Like value definitions, we can override type definitions in subclasses.
This allows us to reveal more information about an abstract type by tightening the
type bound (which describes possible concrete instantiations of the abstract type).
In the following program we derive a class SeqBuffer which allows us to store only
sequences in the buffer by stating that type T has to be a subtype of a new abstract
type U:

abstract class SeqBuffer extends Buffer {

type U

type T <: Seq[U]

def length = element.length

}

Traits or classes with abstract type members are often used in combination with
anonymous class instantiations. To illustrate this, we now look at a program which
deals with a sequence buffer that refers to a list of integers:

abstract class IntSeqBuffer extends SeqBuffer {

type U = Int

}

object AbstractTypeTest1 extends Application {

def newIntSeqBuf(elem1: Int, elem2: Int): IntSeqBuffer =

new IntSeqBuffer {

type T = List[U]

val element = List(elem1, elem2)

}

val buf = newIntSeqBuf(7, 8)

Console.println("length = " + buf.length)

Console.println("content = " + buf.element)

}

http://scala.epfl.ch/

4 An Introduction to Scala

The return type of method newIntSeqBuf refers to a specialization of trait Buffer in
which type U is now equivalent to Int. We have a similar type alias in the anonymous
class instantiation within the body of method newIntSeqBuf. Here we create a new
instance of IntSeqBuffer in which type T refers to List[Int].
Please note that it is often possible to turn abstract type members into type param-
eters of classes and vice versa. Here is a version of the code above which only uses
type parameters:

abstract class Buffer[+T] {

val element: T

}

abstract class SeqBuffer[U, +T <: Seq[U]] extends Buffer[T] {

def length = element.length

}

object AbstractTypeTest2 extends Application {

def newIntSeqBuf(e1: Int, e2: Int): SeqBuffer[Int, Seq[Int]] =

new SeqBuffer[Int, List[Int]] {

val element = List(e1, e2)

}

val buf = newIntSeqBuf(7, 8)

Console.println("length = " + buf.length)

Console.println("content = " + buf.element)

}

Note that we have to use variance annotations here; otherwise we would not be
able to hide the concrete sequence implementation type of the object returned from
method newIntSeqBuf. Furthermore, there are cases where it is not possible to re-
place abstract types with type parameters.

Attribute Clauses 5

Attribute Clauses

Attributes associate meta-information with definitions.
A simple attribute clause has the form [C] or [C(a1, .., an)]. Here, C is a con-
structor of a class C, which must conform to the class scala.Attribute. All given
constructor arguments a1, .., an must be constant expressions (i.e., expressions
on numeral literals, strings, class literals, Java enumerations and one-dimensional
arrays of them).
An attribute clause applies to the first definition or declaration following it. More
than one attribute clause may precede a definition and declaration. The order in
which these clauses are given does not matter.
The meaning of attribute clauses is implementation-dependent. On the Java plat-
form, the following Scala attributes have a standard meaning.

Scala Java
scala.reflect.BeanProperty Design pattern
scala.serializable java.io.Serializable
scala.cloneable java.lang.Cloneable
scala.remote java.rmi.Remote
scala.transient transient (keyword)
scala.volatile volatile (keyword)
scala.SerialVersionUID serialVersionUID (field)
scala.throws throws (keyword)

In the following example we add the throws attribute to the definition of the method
read in order to catch the thrown exception in the Java main program.

package examples

import java.io._

class Reader(fname: String) {

private val in = new BufferedReader(new FileReader(fname))

[throws(classOf[IOException])]

def read() = in.read()

}

The following Java program prints out the contents of the file whose name is passed
as the first argument to the main method.

package test;

import examples.Reader; // Scala class !!

public class AttribTest {

public static void main(String[] args) {

try {

Reader in = new Reader(args[0]);

int c;

while ((c = in.read()) != -1) {

http://scala.epfl.ch/
http://scala.epfl.ch/
http://java.sun.com/docs/books/tutorial/javabeans/properties/properties.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Cloneable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/rmi/Remote.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html#navbar_bottom
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

6 An Introduction to Scala

System.out.print((char) c);

}

} catch (java.io.Exception e) {

System.out.println(e.getMessage());

}

}

}

Commenting out the throws attribute in the class Reader produces the following
error message when compiling the Java main program:

Main.java:11: exception java.io.IOException is never thrown in body of

corresponding try statement

} catch (java.io.IOException e) {

^

1 error

Java annotations

Note: Make sure you use the -target:jvm-1.5 option with Java annotations.
Java 1.5 introduced user-defined metadata in the form of

annotations . A key feature of annotations is that they rely on specifying name-
value pairs to initialize their elements. For instance, if we need an annotation to
track the source of some class we might define it as

@interface Source {

public String URL();

public String mail();

}

And then apply it as follows

@Source(URL = "http://coders.com/" ,

mail = "support@coders.com")

public class MyClass extends HisClass ...

An attribute application in Scala looks like a constructor invocation. This is not
enough for Java annotations so the syntax has been extended in a way pretty much
similar to Java’s

[Source { val URL = "http://coders.com/" ,

val mail = "support@coders.com" }]

class MyScalaClass ...

This syntax is quite tedious if the annotation contains only one element (without
default value) so, by convention, if the name is specified as value it can be applied
in Java using a constructor-like syntax:

http://www.jcp.org/en/jsr/detail?id=175
http://scala.epfl.ch/

Attribute Clauses 7

@interface SourceURL {

public String value();

public String mail() default = "";

}

And then apply it as follows

@SourceURL("http://coders.com/")

public class MyClass extends HisClass ...

In this case, Scala provides the same possibility

[SourceURL("http://coders.com/")]

class MyScalaClass ...

The mail element was specified with a default value so we need not explicitly pro-
vide a value for it. However, if we need to do it we can not mix-and-match the two
styles in Java:

@SourceURL(value = "http://coders.com/" ,

mail = "support@coders.com")

public class MyClass extends HisClass ...

Scala provides more flexibility in this respect

[SourceURL("http://coders.com/")

{ val mail = "support@coders.com" }]

class MyScalaClass ...

This extended syntax is consistent with .NET’s attributes and can accomodate their
full capabilites.

http://scala.epfl.ch/
http://scala.epfl.ch/

8 An Introduction to Scala

Case Classes

Scala supports the notion of case classes. Case classes are regular classes which
export their constructor parameters and which provide a recursive decomposition
mechanism via pattern matching.
Here is an example for a class hierarchy which consists of an abstract super class
Term and three concrete case classes Var, Fun, and App.

abstract class Term

case class Var(name: String) extends Term

case class Fun(arg: String, body: Term) extends Term

case class App(f: Term, v: Term) extends Term

This class hierarchy can be used to represent terms of the
untyped lambda calculus . To facilitate the construction of case class instances,

Scala does not require that the new primitive is used. One can simply use the class
name as a function.
Here is an example:

Fun("x", Fun("y", App(Var("x"), Var("y"))))

The constructor parameters of case classes are treated as public values and can be
accessed directly.

val x = Var("x")

Console.println(x.name)

For every case class the Scala compiler generates equalsmethod which implements
structural equality and a toString method. For instance:

val x1 = Var("x")

val x2 = Var("x")

val y1 = Var("y")

Console.println("" + x1 + " == " + x2 + " => " + (x1 == x2))

Console.println("" + x1 + " == " + y1 + " => " + (x1 == y1))

will print

Var(x) == Var(x) => true

Var(x) == Var(y) => false

It makes only sense to define case classes if pattern matching is used to decom-
pose data structures. The following object defines a pretty printer function for our
lambda calculus representation:

http://scala.epfl.ch/
http://www.ezresult.com/article/Lambda_calculus
http://scala.epfl.ch/
http://scala.epfl.ch/

Case Classes 9

object TermTest extends Application {

def print(term: Term): Unit = term match {

case Var(n) =>

Console.print(n)

case Fun(x, b) =>

Console.print("^" + x + ".")

print(b)

case App(f, v) =>

Console.print("(")

print(f)

Console.print(" ")

print(v)

Console.print(")")

}

def isIdentityFun(term: Term): Boolean = term match {

case Fun(x, Var(y)) if x == y => true

case _ => false

}

val id = Fun("x", Var("x"))

val t = Fun("x", Fun("y", App(Var("x"), Var("y"))))

print(t)

Console.println

Console.println(isIdentityFun(id))

Console.println(isIdentityFun(t))

}

In our example, the function print is expressed as a pattern matching statement
starting with the match keyword and consisting of sequences of case Pattern =>
Body clauses.
The program above also defines a function isIdentityFun which checks if a given
term corresponds to a simple identity function. This example uses deep patterns
and guards. After matching a pattern with a given value, the guard (defined after
the keyword if) is evaluated. If it returns true, the match succeeds; otherwise, it
fails and the next pattern will be tried.

10 An Introduction to Scala

Classes

Classes in Scala are static templates that can be instantiated into many objects at
runtime.
Here is a class definition which defines a class Point:

class Point(xc: Int, yc: Int) {

var x: Int = xc

var y: Int = yc

def move(dx: Int, dy: Int): Unit = {

x = x + dx

y = y + dy

}

override def toString(): String = "(" + x + ", " + y + ")";

}

The class defines two variables x and y and two methods: move and toString. move
takes two integer arguments but does not return a value (the return type Unit cor-
responds to void in Java-like languages). toString, on the other hand, does not
take any parameters but returns a String value. Since toString overrides the pre-
defined toString method, it has to be tagged with the override flag.
Classes in Scala are parameterized with constructor arguments. The code above
defines two constructor arguments, xc and yc; they are both visible in the whole
body of the class. In our example they are used to initialize the variables x and y.
Classes are instantiated with the new primitive, as the following example will show:

object Classes {

def main(args: Array[String]): Unit = {

val pt = new Point(1, 2)

Console.println(pt)

pt.move(10, 10)

Console.println(pt)

}

}

The program defines an executable application Classes in form of a top-level sin-
gleton object with a main method. The main method creates a new Point and stores
it in value pt. Note that values defined with the val construct are different from
variables defined with the var construct (see class Point above) in that they do not
allow updates; i.e. the value is constant.
Here is the output of the program:

(1, 2)

(11, 12)

http://scala.epfl.ch/
http://scala.epfl.ch/

Predefined function classOf 11

Predefined function classOf

The predefined function classOf[T] returns a runtime representation of the Scala
class type T.
The following Scala code example prints out the runtime representation of the args

parameter:

object ClassReprTest {

abstract class Bar {

type T <: AnyRef

def bar(x: T): Unit = {

Console.println("5: " + x.getClass())

}

}

def main(args: Array[String]): Unit = {

Console.println("1: " + args.getClass())

Console.println("2: " + classOf[Array[String]])

new Bar {

type T = Array[String]

val x: T = args

Console.println("3: " + x.getClass())

Console.println("4: " + classOf[T])

}.bar(args)

}

}

Here is the output of the Scala program:

1: class [Ljava.lang.String;

2: class [Ljava.lang.String;

3: class [Ljava.lang.String;

4: class [Ljava.lang.String;

5: class [Ljava.lang.String;

A similar code example in Java 5 (aka. JDK 1.5) looks as follows:

public class ClassReprTest {

static <A> void foo(A x) {

System.out.println("4: " + x.getClass());

}

public static void main(String[] args) throws Exception {

System.out.println("1: " + args.getClass());

System.out.println("2: " + String[].class);

System.out.println("3: " + Class.forName("[Ljava.lang.String;"));

foo(args);

}

}

When you execute the above Java program it will display four times the string "class
[Ljava.lang.String;".

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://java.sun.com/j2se/1.5/

12 An Introduction to Scala

Compound Types

Sometimes it is necessary to express that the type of an object is a subtype of several
other types. In Scala this can be expressed with the help of compound types, which
are intersections of object types.
Suppose we have two traits Cloneable and Resetable:

trait Cloneable extends java.lang.Cloneable {

override def clone(): Cloneable = { super.clone(); this }

}

trait Resetable {

def reset: Unit

}

Now suppose we want to write a function cloneAndReset which takes an object,
clones it and resets the original object:

def cloneAndReset(obj: ?): Cloneable = {

val cloned = obj.clone()

obj.reset

cloned

}

The question arises what the type of the parameter obj is. If it’s Cloneable then the
object can be cloned, but not reset; if it’s Resetable we can reset it, but there is no
clone operation. To avoid type casts in such a situation, we can specify the type of
obj to be both Cloneable and Resetable. This compound type is written like this in
Scala: Cloneable with Resetable.
Here’s the updated function:

def cloneAndReset(obj: Cloneable with Resetable): Cloneable = {

//...

}

Compound types can consist of several object types and they may have a single
refinement which can be used to narrow the signature of existing object members.
The general form is: A with B with C ... refinement

An example for the use of refinements is given on the page about abstract types.

http://scala.epfl.ch/
http://scala.epfl.ch/

Sequence Comprehensions 13

Sequence Comprehensions

Scala offers a lightweight notation for expressing sequence comprehensions. Com-
prehensions have the form for (enums) yield e, where enums refers to a semicolon-
separated list of enumerators. An enumerator is either a generator which introduces
new variables, or it is a filter. A comprehension evaluates the body e for each bind-
ing generated by the enumerators enum and returns a sequence of these values.
Here is an example:

object ComprehensionTest1 extends Application {

def even(from: Int, to: Int): List[Int] =

for (val i <- List.range(from, to); i % 2 == 0) yield i

Console.println(even(0, 20))

}

The for-expression in function even introduces a new variable i of type Int which is
subsequently bound to all values of the list List(from, from + 1, ..., to - 1). The con-
straint i % 2 == 0 filters out all odd numbers so that the body (which only consists
of the expression i) is only evaluated for even numbers. Consequently, the whole
for-expression returns a list of even numbers.
The program yields the following output:

List(0, 2, 4, 6, 8, 10, 12, 14, 16, 18)

Here is a more complicated example which computes all pairs of numbers between
0 and n-1 whose sum is equal to a given value v:

object ComprehensionTest2 extends Application {

def foo(n: Int, v: Int): Iterator[Pair[Int, Int]] =

for (val i <- Iterator.range(0, n);

val j <- Iterator.range(i + 1, n);

i + j == v) yield

Pair(i, j);

foo(20, 32) foreach {

case Pair(i, j) =>

Console.println("(" + i + ", " + j + ")")

}

}

This example shows that comprehensions are not restricted to lists. The previous
program uses iterators instead. Every datatype that supports the operations filter,
map, and flatMap (with the proper types) can be used in sequence comprehensions.
Here’s the output of the program:

(13, 19)

(14, 18)

(15, 17)

http://scala.epfl.ch/

14 An Introduction to Scala

There is also a special form of sequence comprehension which returns Unit. Here
the bindings that are created from the list of generators and filters are used to per-
form side-effects. The programmer has to omit the keyword yield to make use of
such a sequence comprehension.
Here’s a program which is equivalent to the previous one but uses the special for
comprehension returning Unit:

object ComprehensionTest3 extends Application {

for (val i <- Iterator.range(0, 20);

val j <- Iterator.range(i + 1, 20);

i + j == 32)

Console.println("(" + i + ", " + j + ")")

}

Currying 15

Currying

Methods may define multiple parameter lists. When a method is called with a fewer
number of parameter lists, then this will yield a function taking the missing param-
eter lists as its arguments.
Here is an example:

object CurryTest extends Application {

def filter(xs: List[Int], p: Int => Boolean): List[Int] =

if (xs.isEmpty) xs

else if (p(xs.head)) xs.head :: filter(xs.tail, p)

else filter(xs.tail, p)

def modN(n: Int)(x: Int) = ((x % n) == 0)

val nums = List(1, 2, 3, 4, 5, 6, 7, 8)

Console.println(filter(nums, modN(2)))

Console.println(filter(nums, modN(3)))

}

Note that method modN is partially applied in the two filter calls; i.e. only its
first argument is actually applied. The term modN(2) yields a function of type Int

=> Boolean and is thus a possible candidate for the second argument of function
filter.
Here’s the output of the program above:

List(2,4,6,8)

List(3,6)

16 An Introduction to Scala

Nested Functions

In Scala it is possible to nest function definitions. The following object provides a
filter function for extracting values from a list of integers that are below a threshold
value:

object FilterTest extends Application {

def filter(xs: List[Int], threshold: Int) = {

def process(ys: List[Int]): List[Int] =

if (ys.isEmpty) ys

else if (ys.head < threshold) ys.head :: process(ys.tail)

else process(ys.tail)

process(xs)

}

Console.println(filter(List(1, 9, 2, 8, 3, 7, 4), 5))

}

Note that the nested function process refers to variable threshold defined in the
outer scope as a parameter value of filter.
The output of this program is:

List(1,2,3,4)

http://scala.epfl.ch/

Anonymous Function Syntax 17

Anonymous Function Syntax

Scala provides a relatively lightweight syntax for defining anonymous functions.
The following expression creates a successor function for integers:

(x: Int) => x + 1

This is a shorthand for the following anonymous class definition:

new Function1[Int, Int] {

def apply(x: Int): Int = x + 1

}

It is also possible to define functions with multiple parameters:

(x: Int, y: Int) => "(" + x + ", " + y + ")"

or with no parameter:

() => { System.getProperty("user.dir") }

There is also a very lightweight way to write function types. Here are the types of the
three functions defined above:

Int => Int

(Int, Int) => String

Unit => String

This syntax is a shorthand for the following types:

Function1[Int, Int]

Function2[Int, Int, String]

Function1[Unit, String]

http://scala.epfl.ch/

18 An Introduction to Scala

Generic Classes

Like in Java 5 (aka. JDK 1.5), Scala has built-in support for classes parameterized
with types. Such generic classes are particularly useful for the development of col-
lection classes.
Here is an example which demonstrates this:

class Stack[T] {

var elems: List[T] = Nil

def push(x: T): Unit = elems = x :: elems

def top: T = elems.head

def pop: Unit = elems = elems.tail

}

Class Stack models imperative (mutable) stacks of an arbitrary element type T. The
use of type parameters allows to check that only legal elements (that are of type
T) are pushed onto the stack. Similarly, with type parameters we can express that
method top will only yield elements of the given type.
Here are some usage examples:

object GenericsTest extends Application {

val stack = new Stack[Int]

stack.push(1)

stack.push(’a’)

Console.println(stack.top)

stack.pop

Console.println(stack.top)

}

The output of this program will be:

97

1

Note that subtyping of generic types is invariant. This means that if we have a stack
of characters of type Stack[Char] then it cannot be used as an integer stack of type
Stack[Int]. This would be unsound because it would enable us to enter true inte-
gers into the character stack. To conclude, Stack[T] is only a subtype of Stack[S] iff
S = T. Since this can be quite restrictive, Scala offers a type parameter annotation
mechanism to control the subtyping behavior of generic types.

http://java.sun.com/j2se/1.5/
http://scala.epfl.ch/
http://scala.epfl.ch/

Higher-Order Functions 19

Higher-Order Functions

Scala allows the definition of higher-order functions. These are functions that take
other functions as parameters, or whose result is a function. Here is a function apply

which takes another function f and a value v and applies function f to v:
def apply(f: Int => String, v: Int) => f(v)

Note that methods are automatically coerced to functions if the context requires
this.
Here is an example:

class Decorator(left: String, right: String) {

def layout[A](x: A) = left + x.toString() + right

}

object FunTest extends Application {

def apply(f: Int => String, v: Int) = f(v)

val decorator = new Decorator("[", "]")

Console.println(apply(decorator.layout, 7))

}

Execution yields the output:

[7]

In this example, the method decorator.layout is coerced automatically to a value
of type Int => String as required by method app. Please note that method decorator.layout

is a polymorphic method (i.e. it abstracts over some of its signature types) and the
Scala compiler has to instantiate its method type first appropriately.

http://scala.epfl.ch/
http://scala.epfl.ch/

20 An Introduction to Scala

Implicit Parameters

A method with implicit parameters can be applied to arguments just like a normal
method. In this case the implicit label has no effect. However, if such a method
misses arguments for its implicit parameters, such arguments will be automatically
provided.
The actual arguments that are eligible to be passed to an implicit parameter fall into
two categories:

- First, eligible are all identifiers x that can be accessed at the point of the method
call without a prefix and that denote an implicit definition or an implicit pa-
rameter.

- Second, eligible are also all members of companion modules of the implicit
parameter’s type that are labeled implicit.

In the following example we define a method sum which computes the sum of a list
of elements using the monoid’s add and unit operations. Please note that implicit
values can not be top-level, they have to be members of a template.

abstract class SemiGroup[A] {

def add(x: A, y: A): A

}

abstract class Monoid[A] extends SemiGroup[A] {

def unit: A

}

object ImplicitTest extends Application {

implicit object StringMonoid extends Monoid[String] {

def add(x: String, y: String): String = x.concat(y)

def unit: String = ""

}

implicit object IntMonoid extends Monoid[int] {

def add(x: Int, y: Int): Int = x + y

def unit: Int = 0

}

def sum[A](xs: List[A])(implicit m: Monoid[A]): A =

if (xs.isEmpty) m.unit

else m.add(xs.head, sum(xs.tail))

sum(List(1, 2, 3))

sum(List("a", "b", "c"))

}

Local Type Inference 21

Local Type Inference

Scala has a built-in type inference mechanism which allows the programmer to
omit certain type annotations. It is, for instance, often not necessary in Scala to
specify the type of a variable, since the compiler can deduce the type from the ini-
tialization expression of the variable. Also return types of methods can often be
omitted since they corresponds to the type of the body, which gets inferred by the
compiler.
Here is an example:

object InferenceTest1 extends Application {

val x = 1 + 2 * 3 // the type of x is Int

val y = x.toString() // the type of y is String

def succ(x: Int) = x + 1 // method succ returns Int values

}

For recursive methods, the compiler is not able to infer a result type. Here is a pro-
gram which will fail the compiler for this reason:

object InferenceTest2 {

def fac(n: Int) = if (n == 0) 1 else n * fac(n - 1)

}

It is also not compulsory to specify type parameters when polymorphic methods are
called or generic classes are instantiated. The Scala compiler will infer such missing
type parameters from the context and from the types of the actual method/con-
structor parameters.
Here is an example which illustrates this:

case class MyPair[A, B](x: A, y: B);

object InferenceTest3 extends Application {

def id[T](x: T) = x

val p = new MyPair(1, "scala") // type: MyPair[Int, String]

val q = id(1) // type: Int

}

The last two lines of this program are equivalent to the following code where all
inferred types are made explicit:

val x: MyPair[Int, String] = new MyPair[Int, String](1, "scala")

val y: Int = id[Int](1)

In some situations it can be quite dangerous to rely on Scala’s type inference mech-
anism as the following program shows:

object InferenceTest4 {

var obj = null

obj = new Object()

}

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/

22 An Introduction to Scala

This program does not compile because the type inferred for variable obj is AllRef.
Since the only value of that type is null, it is impossible to make this variable refer
to another value.

Inner Classes 23

Inner Classes

In Scala it is possible to let classes have other classes as members. Opposed to Java-
like languages where such inner classes are members of the enclosing class, in Scala
such inner classes are bound to the outer object. To illustrate the difference, we
quickly sketch the implementation of a graph datatype:

class Graph {

class Node {

var connectedNodes: List[Node] = Nil

def connectTo(node: Node): Unit =

if (connectedNodes.find(node.equals).isEmpty) {

connectedNodes = node :: connectedNodes;

}

}

var nodes: List[Node] = Nil;

def newNode: Node = {

var res = new Node

nodes = res :: nodes

res

}

}

In our program, graphs are represented by a list of nodes. Nodes are objects of
inner class Node. Each node has a list of neighbours, which get stored in the list
connectedNodes. Now we can set up a graph with some nodes and connect the
nodes incrementally:

object GraphTest extends Application {

val g = new Graph

val n1 = g.newNode

val n2 = g.newNode

val n3 = g.newNode

n1.connectTo(n2)

n3.connectTo(n1)

}

We now enrich the following example with types to state explicitly what the type of
the various defined entities is:

object GraphTest extends Application {

val g: Graph = new Graph

val n1: g.Node = g.newNode

val n2: g.Node = g.newNode

val n3: g.Node = g.newNode

n1.connectTo(n2)

n3.connectTo(n1)

}

http://scala.epfl.ch/
http://scala.epfl.ch/

24 An Introduction to Scala

This code clearly shows that a node type is prefixed with its outer instance (which
is object g in our example). If we now have two graphs, the type system of Scala
does not allow us to mix nodes defined within one graph with the nodes of another
graph, since the nodes of the other graph have a different type.
Here is an illegal program:

object IllegalGraphTest extends Application {

val g: Graph = new Graph

val n1: g.Node = g.newNode

val n2: g.Node = g.newNode

n1.connectTo(n2) // legal

val h: Graph = new Graph

val n3: h.Node = h.newNode

n1.connectTo(n3) // illegal!

}

Please note that in Java the last line in the previous example program would have
been correct. For nodes of both graphs, Java would assign the same type Graph.Node;
i.e. Node is prefixed with class Graph. In Scala such a type can be expressed as well, it
is written Graph#Node. If we want to be able to connect nodes of different graphs, we
have to change the definition of our initial graph implementation in the following
way:

class Graph {

class Node {

var connectedNodes: List[Graph#Node] = Nil;

def connectTo(node: Graph#Node): Unit =

if (connectedNodes.find(node.equals).isEmpty) {

connectedNodes = node :: connectedNodes

}

}

var nodes: List[Node] = Nil;

def newNode: Node = {

var res = new Node

nodes = res :: nodes

res

}

}

Please note that this program doesn’t allow us to attach a node to two different
graphs. If we want to remove this restriction as well, we have to change the type
of variable nodes and the return type of method newNode to Graph#Node.

http://scala.epfl.ch/
http://scala.epfl.ch/

Lower Type Bounds 25

Lower Type Bounds

While upper type bounds limit a type to a subtype of another type, lower type bounds
declare a type to be a supertype of another type. The term T >: A expresses that
the type parameter T or the abstract type T refer to a supertype of type A.
Here is an example where this is useful:

case class ListNode[T](h: T, t: ListNode[T]) {

def head: T = h

def tail: ListNode[T] = t

def prepend(elem: T): ListNode[T] =

ListNode(elem, this)

}

The program above implements a linked list with a prepend operation. Unfortu-
nately, this type is invariant in the type parameter of class ListNode; i.e. type ListNode[String]
is not a subtype of type List[Object]. With the help of variance annotations we can
express such a subtype semantics:

case class ListNode[+T](h: T, t: ListNode[T]) { ... }

Unfortunately, this program does not compile, because a covariance annotation is
only possible if the type variable is used only in covariant positions. Since type vari-
able T appears as a parameter type of method prepend, this rule is broken. With the
help of a lower type bound, though, we can implement a prepend method where T

only appears in covariant positions.
Here is the corresponding code:

case class ListNode[+T](h: T, t: ListNode[T]) {

def head: T = h

def tail: ListNode[T] = t

def prepend[U >: T](elem: U): ListNode[U] =

ListNode(elem, this)

}

Note that the new prepend method has a slightly less restrictive type. It allows, for
instance, to prepend an object of a supertype to an existing list. The resulting list
will be a list of this supertype.
Here is some code which illustrates this:

object LowerBoundTest extends Application {

val empty: ListNode[AllRef] = ListNode(null, null)

val strList: ListNode[String] = empty.prepend("hello")

.prepend("world")

val anyList: ListNode[Any] = strList.prepend(12345)

}

26 An Introduction to Scala

Mixin Class Composition

As opposed to languages that only support single inheritance, Scala has a more gen-
eral notion of class reuse. Scala makes it possible to reuse the new member defini-
tions of a class (i.e. the delta in relationship to the superclass) in the definition of a
new class. This is expressed as a mixin-class composition. Consider the following
abstraction for iterators.

abstract class AbsIterator {

type T

def hasNext: Boolean

def next: T

}

Next, consider a mixin class which extends AbsIterator with a method foreach

which applies a given function to every element returned by the iterator. To define
a class that can be used as a mixin we use the keyword trait.

trait RichIterator extends AbsIterator {

def foreach(f: T => Unit): Unit =

while (hasNext) f(next)

}

Here is a concrete iterator class, which returns successive characters of a given string:

class StringIterator(s: String) extends AbsIterator {

type T = Char

private var i = 0

def hasNext = i < s.length()

def next = { val ch = s.charAt(i); i = i + 1; ch }

}

We would like to combine the functionality of StringIterator and RichIterator

into a single class. With single inheritance and interfaces alone this is impossible,
as both classes contain member impementations with code. Scala comes to help
with its mixin-class composition. It allows the programmers to reuse the delta of
a class definition, i.e., all new definitions that are not inherited. This mechanism
makes it possible to combine StringIterator with RichIterator, as is done in the
following test program which prints a column of all the characters of a given string.

object StringIteratorTest {

def main(args: Array[String]) {

class Iter extends StringIterator(args(0)) with RichIterator

val iter = new Iter

iter.foreach(System.out.println)

}

}

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/

Mixin Class Composition 27

The Iter class in function main is constructed from a mixin composition of the par-
ents StringIterator and RichIterator with the keyword with. The first parent is
called the superclass of Iter, whereas the second (and every other, if present) parent
is called a mixin.

28 An Introduction to Scala

Operators

Any method which takes a single parameter can be used as an infix operator in
Scala. Here is the definition of class MyBool which defines three methods and, or,
and negate.

class MyBool(x: Boolean) {

def and(that: MyBool): MyBool = if (x) that else this

def or(that: MyBool): MyBool = if (x) this else that

def negate: MyBool = new MyBool(!x)

}

It is now possible to use and and or as infix operators:

def not(x: MyBool) = x negate; // semicolon required here

def xor(x: MyBool, y: MyBool) = (x or y) and not(x and y)

As the first line of this code shows, it is also possible to use nullary methods as post-
fix operators. The second line defines an xor function using the and and or methods
as well as the new not function. In this example the use of infix operators helps to
make the definition of xor more readable.
Here is the corresponding code in a more traditional object-oriented programming
language syntax:

def not(x: MyBool) = x.negate; // semicolon required here

def xor(x: MyBool, y: MyBool) = x.or(y).and(x.and(y).negate)

http://scala.epfl.ch/

Packages 29

Packages

A package is a special object which defines a set of member classes, objects and
packages. Unlike other objects, packages are not introduced by a definition.
A packaging package p ds injects all definitions in ds as members into the pack-
age whose qualified name is p. Members of a package are called top-level defini-
tions. If a definition in ds is labeled private, it is visible only for other members in
the package.

A protected modifier can be qualified with an package identifier p (e.g. protected[p]).
Members labeled with such a modifier are also accessible from all code inside the
package p.
Selections p.m from p as well as imports from p work as for objects. However, unlike
other objects, packages may not be used as values. It is illegal to have a package
with the same fully qualified name as a module or a class.
Top-level definitions outside a packaging are assumed to be injected into a special
empty package. That package cannot be named and therefore cannot be imported.
However, members of the empty package are visible to each other without qualifi-
cation.
A compilation unit package p; stats starting with a package clause is equivalent
to a compilation unit consisting of a single packaging package p stats .
Several packages may be declared in the same Scala source file:

package p1 {

object test extends Application {

Console.println("p1.test")

}

}

package p2 {

object test extends Application {

Console.println("p2.test")

}

}

Implicitly imported into every compilation unit are, in that order:

- the package java.lang,

- the package scala,

- and the object scala.Predef.

Members of a later import in that order hide members of an earlier import.

http://scala.epfl.ch/

30 An Introduction to Scala

Pattern Matching

Scala has a built-in general pattern matching mechanism. It allows to match on any
sort of data with a first-match policy.
Here is a small example which shows how to match against an integer value:

object MatchTest1 extends Application {

def matchTest(x: Int): String = x match {

case 1 => "one"

case 2 => "two"

case _ => "many"

}

Console.println(matchTest(3))

}

The block with the case statements defines a function which maps integers to strings.
The match keyword provides a convenient way of applying a function (like the pat-
tern matching function above) to an object.
Here is a second example which matches a value against patterns of different types:

object MatchTest2 extends Application {

def matchTest(x: Any): Any = x match {

case 1 => "one"

case "two" => 2

case y: Int => "scala.Int"

}

Console.println(matchTest("two"))

}

The first case matches if x refers to the integer value 1. The second case matches if
x is equal to the string "two". The third case consists of a typed pattern; it matches
against any integer and binds the selector value x to the variable y of type integer.
Scala’s pattern matching statement is most useful for matching on algebraic types
expressed via case classes.

http://scala.epfl.ch/
http://scala.epfl.ch/

Polymorphic Methods 31

Polymorphic Methods

Methods in Scala can be parameterized with both values and types. Like on the class
level, value parameters are enclosed in a pair of parentheses, while type parameters
are declared within a pair of brackets.
Here is an example:

object PolyTest extends Application {

def dup[T](x: T, n: Int): List[T] =

if (n == 0) Nil

else x :: dup(x, n - 1)

Console.println(dup[Int](3, 4))

Console.println(dup("three", 3))

}

Method dup in object PolyTest is parameterized with type T and with the value pa-
rameters x: T and n: Int. When method dup is called, the programmer provides
the required parameters (see line 6 in the program above), but as line 7 in the pro-
gram above shows, the programmer is not required to give actual type parameters
explicitly. The type system of Scala can infer such types. This is done by looking
at the types of the given value parameters and at the context where the method is
called.

http://scala.epfl.ch/
http://scala.epfl.ch/

32 An Introduction to Scala

Regular Expression Patterns

Right-ignoring sequence patterns
Right-ignoring patterns are a useful feature to decompose any data which is either a
subtype of Seq[A] or a case class with an iterated formal parameter, like for instance
Elem(prefix:String,label:String,attrs:MetaData,scp:NamespaceBinding, children:Node*).
In those cases, Scala allows patterns having a wildcard-star _* in the rightmost po-
sition to stand for arbitrary long sequences.
The following example demostrate a pattern match which matches a prefix of a se-
quence and binds the rest to the variable rest.

object RegExpTest1 extends Application {

def containsScala(x: String): Boolean = {

val z: Seq[Char] = x

z match {

case Seq(’s’,’c’,’a’,’l’,’a’, rest @ _*) =>

Console.println("rest is "+rest)

true

case Seq(_*) =>

false

}

}

}

In contrast to previous Scala version, it is no longer allowed to have arbitrary regular
expressions, for the reasons described below.

General RegExp patterns temporarily retracted from Scala
Since we discovered a problem in correctness, this feature is temporarily retracted
from the Scala language. If there is request from the user community, we might
reactivate it in an improved form.
According to our opinion regular expressions patterns were not so useful for XML
processing as we estimated. In real life XML processing applications, XPath seems
a far better option. When we discovered that our translation or regular expressions
patterns has some bugs for esoteric patterns which are unusual yet hard to exclude,
we chose it would be time to simplify the language.

Explicitly Typed Self References 33

Explicitly Typed Self References

When developing extensible software it is sometimes handy to declare the type of
the value this explicitly. To motivate this, we will derive a small extensible repre-
sentation of a graph data structure in Scala.
Here is a definition describing graphs:

abstract class Graph {

type Edge

type Node <: NodeIntf

abstract class NodeIntf {

def connectWith(node: Node): Edge

}

def nodes: List[Node]

def edges: List[Edge]

def addNode: Node

}

Graphs consist of a list of nodes and edges where both the node and the edge type
are left abstract. The use of abstract types allows implementations of trait Graph
to provide their own concrete classes for nodes and edges. Furthermore, there is
a method addNode for adding new nodes to a graph. Nodes are connected using
method connectWith.
A possible implementation of class Graph is given in the next program:

abstract class DirectedGraph extends Graph {

type Edge <: EdgeImpl

class EdgeImpl(origin: Node, dest: Node) {

def from = origin

def to = dest

}

class NodeImpl extends NodeIntf {

def connectWith(node: Node): Edge = {

val edge = newEdge(this, node)

edges = edge :: edges

edge

}

}

protected def newNode: Node

protected def newEdge(from: Node, to: Node): Edge

var nodes: List[Node] = Nil

var edges: List[Edge] = Nil

def addNode: Node = {

val node = newNode

nodes = node :: nodes

node

}

}

http://scala.epfl.ch/

34 An Introduction to Scala

Class DirectedGraph specializes the Graph class by providing a partial implemen-
tation. The implementation is only partial, because we would like to be able to
extend DirectedGraph further. Therefore this class leaves all implementation de-
tails open and thus both the edge and the node type are left abstract. Nevertheless,
class DirectedGraph reveals some additional details about the implementation of
the edge type by tightening the bound to class EdgeImpl. Furthermore, we have
some preliminary implementations of edges and nodes represented by the classes
EdgeImpl and NodeImpl. Since it is necessary to create new node and edge objects
within our partial graph implementation, we also have to add the factory meth-
ods newNode and newEdge. The methods addNode and connectWith are both defined
in terms of these factory methods. A closer look at the implementation of method
connectWith reveals that for creating an edge, we have to pass the self reference this
to the factory method newEdge. But this is assigned the type NodeImpl, so it’s not
compatible with type Node which is required by the corresponding factory method.
As a consequence, the program above is not well-formed and the Scala compiler
will issue an error message.
In Scala it is possible to tie a class to another type (which will be implemented in
future) by giving self reference this the other type explicitly. We can use this mech-
anism for fixing our code above. The explicit self type is specified after the construc-
tor list (which is empty in our example below) with the keyword requires.
Here is the fixed program:

abstract class DirectedGraph extends Graph {

...

class NodeImpl requires Node extends NodeIntf {

def connectWith(node: Node): Edge = {

val edge = newEdge(this, node) // now legal

edges = edge :: edges

edge

}

}

...

}

In this new definition of class NodeImpl, this has type Node. Since type Node is ab-
stract and we therefore don’t know yet if NodeImpl is really a subtype of Node, the
type system of Scala will not allow us to instantiate this class. But nevertheless, we
state with the explicit type annotation of this that at some point, (a subclass of)
NodeImpl has to denote a subtype of type Node in order to be instantiatable.
Here is a concrete specialization of DirectedGraph where all abstract class members
are turned into concrete ones:

class ConcreteDirectedGraph extends DirectedGraph {

type Edge = EdgeImpl

type Node = NodeImpl

protected def newNode: Node = new NodeImpl

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/

Explicitly Typed Self References 35

protected def newEdge(f: Node, t: Node): Edge =

new EdgeImpl(f, t)

}

Please note that in this class, we can instantiate NodeImplbecause now we know that
NodeImpl denotes a subtype of type Node (which is simply an alias for NodeImpl).
Here is a usage example of class ConcreteDirectedGraph:

object GraphTest extends Application {

val g: Graph = new ConcreteDirectedGraph

val n1 = g.addNode

val n2 = g.addNode

val n3 = g.addNode

n1.connectWith(n2)

n2.connectWith(n3)

n1.connectWith(n3)

}

36 An Introduction to Scala

Subclassing

Classes in Scala are extensible. A subclass mechanism makes it possible to specialize
a class by inheriting all members of a given superclass and defining additional class
members.
Here is an example:

class Point(xc: Int, yc: Int) {

val x: Int = xc

val y: Int = yc

def move(dx: Int, dy: Int): Point =

new Point(x + dx, y + dy)

}

class ColorPoint(u: Int, v: Int, c: String) extends Point(u, v) {

val color: String = c

def compareWith(pt: ColorPoint): Boolean =

(pt.x == x) && (pt.y == y) && (pt.color == color)

override def move(dx: Int, dy: Int): ColorPoint =

new ColorPoint(x + dy, y + dy, color)

}

In this example we first define a new class Point for representing points. Then we
define a class ColorPoint which extends class Point.
This has several consequences:

- Class ColorPoint inherits all members from its superclass Point; in our case,
we inherit the values x, y, as well as method move.

- Subclass ColorPoint adds a new method compareWith to the set of (inherited)
methods.

- Scala allows member definitions to be overridden; in our case we override the
move method from class Point. This makes the move method of class Point

inaccessible to clients of ColorPoint objects. Within class ColorPoint, the
inherited method move can be accessed with a super call: super.move(...).
Opposed to Java where method overriding is invariant (i.e. the overriding
method has to have the same signature), Scala allows methods to be overrid-
den in a contra/covariant fashion. In the example above we make use of this
feature by letting method move return a ColorPoint object instead of a Point

object as specified in superclass Point.

- Subclasses define subtypes; this means in our case that we can use ColorPoint
objects whenever Point objects are required.

For cases where we would like to inherit from several other classes, we have to make
use of mixin-based class composition as opposed to pure subclassing.

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/

Automatic Type-Dependent Closure Construction 37

Automatic Type-Dependent Closure Construction

Scala allows parameterless function names as parameters of methods. When
such a method is called, the actual parameters for parameterless function names
are not evaluated and a nullary function is passed instead which encapsulates the
computation of the corresponding parameter (so-called call-by-name evalutation).
The following code demonstrates this mechanism:

object TargetTest1 extends Application {

def whileLoop(cond: => Boolean)(body: => Unit): Unit =

if (cond) {

body

whileLoop(cond)(body)

}

var i = 10

whileLoop (i > 0) {

Console.println(i)

i = i - 1

}

}

The function whileLoop takes two parameters cond and body. When the function
is applied, the actual parameters do not get evaluated. But whenever the formal
parameters are used in the body of whileLoop, the implicitly created nullary func-
tions will be evaluated instead. Thus, our method whileLoop implements a Java-like
while-loop with a recursive implementation scheme.
We can combine the use of infix/postfix operators with this mechanism to create
more complex statements (with a nice syntax).
Here is the implementation of a loop-unless statement:

object TargetTest2 extends Application {

def loop(body: => Unit): LoopUnlessCond =

new LoopUnlessCond(body)

protected class LoopUnlessCond(body: => Unit) {

def unless(cond: => Boolean): Unit = {

body

if (!cond) unless(cond)

}

}

var i = 10

loop {

Console.println("i = " + i)

i = i - 1

} unless (i == 0)

}

http://scala.epfl.ch/

38 An Introduction to Scala

The loop function just accepts a body of a loop and returns an instance of class
LoopUnlessCond (which encapsulates this body object). Note that the body didn’t
get evaluated yet. Class LoopUnlessCond has a method unless which we can use as
a infix operator. This way, we achieve a quite natural syntax for our new loop: loop
< stats > unless (< cond >).
Here’s the output when TargetTest2 gets executed:

i = 10

i = 9

i = 8

i = 7

i = 6

i = 5

i = 4

i = 3

i = 2

i = 1

Traits 39

Traits

Similar to interfaces in Java, traits are used to define object types by specifying the
signature of the supported methods. Unlike Java, Scala allows traits to be partially
implemented; i.e. it is possible to define default implementations for some meth-
ods. In contrast to classes, traits may not have constructor parameterss.
Here is an example:

trait Similarity {

def isSimilar(x: Any): Boolean

def isNotSimilar(x: Any): Boolean = !isSimilar(x)

}

This trait consists of two methods isSimilar and isNotSimilar. While isSimilar

does not provide a concrete method implementation (it is abstract in the termi-
nology of Java), method isNotSimilar defines a concrete implementation. Conse-
quently, classes that integrate this trait only have to provide a concrete implementa-
tion for isSimilar. The behavior for isNotSimilar gets inherited directly from the
trait. Traits are typically integrated into a class (or other traits) with a mixin class
composition:

class Point(xc: Int, yc: Int) extends Similarity {

var x: Int = xc

var y: Int = yc

def isSimilar(obj: Any) =

obj.isInstanceOf[Point] &&

obj.asInstanceOf[Point].x == x

}

object TraitsTest extends Application {

val p1 = new Point(2, 3)

val p2 = new Point(2, 4)

val p3 = new Point(3, 3)

Console.println(p1.isNotSimilar(p2))

Console.println(p1.isNotSimilar(p3))

Console.println(p1.isNotSimilar(2))

}

Here is the output of the program:

false

true

true

http://scala.epfl.ch/

40 An Introduction to Scala

Unapply methods

Scala allows the definition of customized patterns:

trait Complex extends Product2[double, double]

class ComplexRect(val _1: double, _2: double) extends Complex {

override def toString = "ComplexRect(" + _1 + "," + _2 + ")"

}

class ComplexPolar(val _1:double, _2:double) extends Complex {

override def toString = "ComplexPolar(" + _1 + "," + _2 + ")"

}

object ComplexRect {

def unapply(z: Complex): Option[Complex] =

if (z.isInstanceOf[ComplexRect]) Some(z)

else z match {

case ComplexPolar(mod, arg) =>

Some(new ComplexRect(mod*Math.cos(arg), mod*Math.sin(arg)))

}

}

object ComplexPolar {

def unapply(z: Complex): Option[Complex] =

if (z.isInstanceOf[ComplexPolar]) Some(z)

else z match {

case ComplexRect(re, im) =>

Some(new ComplexPolar(Math.sqrt(re*re + im*im), Math.atan(re/im)))

}

}

object UnapplyTest extends Application {

val z1 = new ComplexRect(1, 1)

val z2 = new ComplexPolar(Math.sqrt(2), Math.PI / 4.0)

Console.println(z1 match {

case ComplexPolar(d, a) => "ComplexPolar(" + d + ", " + a + ")"

case _ => z1.toString

})

Console.println(z2 match {

case ComplexRect(re, im) => "ComplexRect(" + re + ", " + im + ")"

case _ => z2.toString

})

}

The output of this program is:

ComplexPolar(1.4142135623730951, 0.7853981633974483)

http://scala.epfl.ch/

Unapply methods 41

ComplexRect(1.0, 1.0)

42 An Introduction to Scala

Unified Types

In contrast to Java, all values in Scala are objects (including numerical values and
functions). Since Scala is class-based, all values are instances of a class. The diagram
below illustrates the class hierarchy.

The superclass of all classes scala.Any has two direct subclasses scala.AnyVal and
scala.AnyRef representing two different class worlds: value classes and reference
classes. All value classes are predefined; they correspond to the primitive types of
Java-like languages. All other classes define reference types. User-defined classes
define reference types by default; i.e. they always (indirectly) subclass scala.AnyRef.
Every user-defined class in Scala implicitely extends the trait scala.ScalaObject.
Classes from the infrastructure on which Scala is running (e.g. the Java runtime en-
vironment) do not extend scala.ScalaObject. If Scala is used in the context of a
Java runtime environment, then scala.AnyRef corresponds to java.lang.Object.
Please note that the diagram above also shows implicit conversions called views
between the value classs.
Here is an example that demonstrates that both numbers, characters, boolean val-
ues, and functions are objects just like every other object:

object UnifiedTypes {

def main(args: Array[String]): Unit = {

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/

Unified Types 43

val set = new scala.collection.mutable.HashSet[Any]

set += "This is a string" // add a string

set += 732 // add a number

set += ’c’ // add a character

set += true // add a boolean value

set += main // add the main function

val iter: Iterator[Any] = set.elements

while (iter.hasNext) {

Console.println(iter.next.toString())

}

}

}

The program declares an application UnifiedTypes in form of a top-level singleton
object with a main method. The main method defines a local variable set which
refers to an instance of class HashSet[Any]. The program adds various elements to
this set. The elements have to conform to the declared set element type Any. In the
end, string representations of all elements are printed out.
Here is the output of the program:

UnifiedTypes$$anon$0@704baa

true

c

732

This is a string

44 An Introduction to Scala

Upper Type Bounds

In Scala, type parameters and abstract types may be constrained by a type bound.
Such type bounds limit the concrete values of the type variables and possibly reveal
more information about the members of such types. An upper type bound T <: A

declares that type variable T refers to a subtype of type A.
Here is an example which relies on an upper type bound for the implementation of
the polymorphic method findSimilar:

trait Similar {

def isSimilar(x: Any): Boolean

}

case class MyInt(x: Int) extends Similar {

def isSimilar(m: Any): Boolean =

m.isInstanceOf[MyInt] &&

m.asInstanceOf[MyInt].x == x

}

object UpperBoundTest extends Application {

def findSimilar[T <: Similar](e: T, xs: List[T]): Boolean =

if (xs.isEmpty) false

else if (e.isSimilar(xs.head)) true

else findSimilar[T](e, xs.tail)

val list: List[MyInt] = List(MyInt(1), MyInt(2), MyInt(3))

Console.println(findSimilar[MyInt](MyInt(4), list))

Console.println(findSimilar[MyInt](MyInt(2), list))

}

Without the upper type bound annotation it would not be possible to call method
isSimilar in method findSimilar.
The usage of lower type bounds is discussed here.

http://scala.epfl.ch/

Variances 45

Variances

Scala supports variance annotations of type parameters of generic classes. In con-
trast to Java 5 (aka.

JDK 1.5), variance annotations may be added when a class abstraction is de-
fined, whereas in Java 5, variance annotations are given by clients when a class ab-
straction is used.
In the page about generic classes an example for a mutable stack was given. We ex-
plained that the type defined by the class Stack[T] is subject to invariant subtyping
regarding the type parameter. This can restrict the reuse of the class abstraction. We
now derive a functional (i.e. immutable) implementation for stacks which does not
have this restriction. Please note that this is an advanced example which combines
the use of polymorphic methods, lower type bounds, and covariant type parameter
annotations in a non-trivial fashion. Furthermore we make use of inner classes to
chain the stack elements without explicit links.

class Stack[+A] {

def push[B >: A](elem: B): Stack[B] = new Stack[B] {

override def top: B = elem

override def pop: Stack[B] = Stack.this

override def toString() = elem.toString() + " " +

Stack.this.toString()

}

def top: A = error("no element on stack")

def pop: Stack[A] = error("no element on stack")

override def toString() = ""

}

object VariancesTest extends Application {

var s: Stack[Any] = new Stack().push("hello");

s = s.push(new Object())

s = s.push(7)

Console.println(s)

}

The annotation +T declares type T to be used only in covariant positions. Similarly,
-T would declare T to be used only in contravariant positions. For covariant type
parameters we get a covariant subtype relationship regarding this type parameter.
For our example this means Stack[T] is a subtype of Stack[S] if T is a subtype of S.
The opposite holds for type parameters that are tagged with a -.
For the stack example we would have to use the covariant type parameter T in a con-
travariant position for being able to define method push. Since we want covariant
subtyping for stacks, we use a trick and abstract over the parameter type of method
push. We get a polymorphic method in which we use the element type T as a lower
bound of push’s type variable. This has the effect of bringing the variance of T in
sync with its declaration as a covariant type parameter. Now stacks are covariant,

http://scala.epfl.ch/
http://java.sun.com/j2se/1.5/

46 An Introduction to Scala

but our solution allows that e.g. it’s possible to push a string on an integer stack.
The result will be a stack of type Stack[Any]; so only if the result is used in a context
where we expect an integer stack, we actually detect the error. Otherwise we just get
a stack with a more general element type.

Views 47

Views

Implicit parameters and methods can also define implicit conversions called views.
A view from type S to type T is defined by an implicit value which has function type
S => T, or by a method convertible to a value of that type.
Views are applied in two situations:

- If an expression e is of type T, and T does not conform to the expression’s ex-
pected type pt.

- In a selection e.m with e of type T, if the selector m does not denote a member
of T.

In the first case, a view v is searched which is applicable to e and whose result type
conforms to pt. In the second case, a view v is searched which is applicable to e and
whose result contains a member named m.
The following operation on the two lists xs and ys of type List[Int] is legal:

xs <= ys

assuming the implicit methods list2ordered and int2ordered defined below are
in scope:

implicit def list2ordered[A](x: List[A])

(implicit elem2ordered: a => Ordered[A]): Ordered[List[A]] =

new Ordered[List[A]] { /* .. */ }

implicit def int2ordered(x: Int): Ordered[Int] =

new Ordered[Int] { /* .. */ }

The list2ordered function can also be expressed witht he use of a view bound for a
type parameter:

implicit def list2ordered[A <% Ordered[A]](x: List[A]): Ordered[List[A]] = ...

The Scala compiler then generates code equivalent to the definition of list2ordered
given above.
The implicitly imported object scala.Predef declares several predefined types (e.g.
Pair) and methods (e.g. error) but also several views. The following example gives
an idea of the predefined view charWrapper:

final class RichChar(c: Char) {

def isDigit: Boolean = Character.isDigit(c)

// isLetter, isWhitespace, etc.

}

object RichCharTest {

implicit def charWrapper(c: char) = new RichChar(c)

http://scala.epfl.ch/

48 An Introduction to Scala

def main(args: Array[String]) {

Console.println(’0’.isDigit)

}

}

XML Processing 49

XML Processing

Scala can be used to easily create, parse, and process XML documents. XML data
can be represented in Scala either by using a generic data representation, or with
a data-specific data representation. The latter approach is supported by the data-
binding tool schema2src.

Runtime Representation

XML data is represented as labeled trees. Starting with Scala 1.2 (previous versions
need to use the -Xmarkup option), you can conveniently create such labeled nodes
using standard XML syntax.
Consider the following XML document:

<html>

<head>

<title>Hello XHTML world</title>

</head>

<body>

<h1>Hello world</h1>

<p>Scala talks XHTML</p>

</body>

</html>

This document can be created by the following Scala program:

object XMLTest1 extends Application {

val page =

<html>

<head>

<title>Hello XHTML world</title>

</head>

<body>

<h1>Hello world</h1>

<p>Scala talks XHTML</p>

</body>

</html>;

Console.println(page.toString())

}

It is possible to mix Scala expressions and XML:

object XMLTest2 extends Application {

import scala.xml._

val df = java.text.DateFormat.getDateInstance()

val dateString = df.format(new java.util.Date())

def theDate(name: String) =

<dateMsg addressedTo={ name }>

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/

50 An Introduction to Scala

Hello, { name }! Today is { dateString }

</dateMsg>;

Console.println(theDate("John Doe").toString())

}

Data Binding

It many cases, you have a DTD for the XML documents you want to process. You
will want to create special Scala classes for it, and some code to parse the XML, and
to save. Scala comes with a nifty tool that turns your DTDs into a collection of Scala
class definitions which do all of this for you.
Note that documentation and examples on the schema2src tool can be found in
Burak’s draft scala xml book .

http://scala.epfl.ch/
http://scala.epfl.ch/
http://scala.epfl.ch/
http://lamp.epfl.ch/~emir/projects/scalaxbook/scalaxbook.docbk.html

	The Scala Programming Language
	Abstract Types
	Attribute Clauses
	Case Classes
	Classes
	Predefined function classOf
	Compound Types
	Sequence Comprehensions
	Currying
	Nested Functions
	Anonymous Function Syntax
	Generic Classes
	Higher-Order Functions
	Implicit Parameters
	Local Type Inference
	Inner Classes
	Lower Type Bounds
	Mixin Class Composition
	Operators
	Packages
	Pattern Matching
	Polymorphic Methods
	Regular Expression Patterns
	Explicitly Typed Self References
	Subclassing
	Automatic Type-Dependent Closure Construction
	Traits
	Unapply methods
	Unified Types
	Upper Type Bounds
	Variances
	Views
	XML Processing

