
Programming in Scala

DRAFT
September 23, 2004

Martin Odersky

PROGRAMMING METHODS LABORATORY

EPFL
SWITZERLAND

Contents

I Rationale 1

II Scala by Example 7

1 A First Example 11

2 Programming with Actors and Messages 15

3 Expressions and Simple Functions 19

3.1 Expressions And Simple Functions . 19

3.2 Parameters . 20

3.3 Conditional Expressions . 23

3.4 Example: Square Roots by Newton’s Method 23

3.5 Nested Functions . 24

3.6 Tail Recursion . 26

4 First-Class Functions 29

4.1 Anonymous Functions . 30

4.2 Currying . 31

4.3 Example: Finding Fixed Points of Functions 33

4.4 Summary . 35

4.5 Language Elements Seen So Far . 36

5 Classes and Objects 39

6 Case Classes and Pattern Matching 51

6.1 Case Classes and Case Objects . 54

6.2 Pattern Matching . 55

iv CONTENTS

7 Generic Types and Methods 59

7.1 Type Parameter Bounds . 61

7.2 Variance Annotations . 63

7.3 Lower Bounds . 65

7.4 Least Types . 65

7.5 Tuples . 67

7.6 Functions . 68

8 Lists 71

8.1 Using Lists . 71

8.2 Definition of class List I: First Order Methods 73

8.3 Example: Merge sort . 76

8.4 Definition of class List II: Higher-Order Methods 78

8.5 Summary . 84

9 For-Comprehensions 87

9.1 The N-Queens Problem . 88

9.2 Querying with For-Comprehensions . 89

9.3 Translation of For-Comprehensions . 90

9.4 For-Loops . 92

9.5 Generalizing For . 92

10 Mutable State 95

10.1 Stateful Objects . 95

10.2 Imperative Control Structures . 99

10.3 Extended Example: Discrete Event Simulation 100

10.4 Summary . 105

11 Computing with Streams 107

12 Iterators 111

12.1 Iterator Methods . 111

12.2 Constructing Iterators . 114

12.3 Using Iterators . 115

CONTENTS v

13 Combinator Parsing 117

13.1 Simple Combinator Parsing . 117

13.2 Parsers that Produce Results . 121

14 Hindley/Milner Type Inference 127

15 Abstractions for Concurrency 137

15.1 Signals and Monitors . 137

15.2 SyncVars . 139

15.3 Futures . 139

15.4 Parallel Computations . 140

15.5 Semaphores . 141

15.6 Readers/Writers . 141

15.7 Asynchronous Channels . 142

15.8 Synchronous Channels . 143

15.9 Workers . 144

15.10Mailboxes . 146

15.11Actors . 149

III The Scala Language Specification

Version 1.0 151

16 Lexical Syntax 153

16.1 Identifiers . 154

16.2 Braces and Semicolons . 155

16.3 Literals . 155

16.4 Whitespace and Comments . 155

16.5 XML mode . 155

17 Identifiers, Names and Scopes 157

18 Types 159

18.1 Paths . 160

18.2 Value Types . 160

vi CONTENTS

18.2.1 Singleton Types . 160

18.2.2 Type Projection . 160

18.2.3 Type Designators . 161

18.2.4 Parameterized Types . 161

18.2.5 Compound Types . 162

18.2.6 Function Types . 162

18.3 Non-Value Types . 163

18.3.1 Method Types . 163

18.3.2 Polymorphic Method Types . 164

18.4 Base Classes and Member Definitions . 164

18.5 Relations between types . 166

18.5.1 Type Equivalence . 166

18.5.2 Conformance . 166

18.6 Type Erasure . 168

18.7 Implicit Conversions . 168

19 Basic Declarations and Definitions 171

19.1 Value Declarations and Definitions . 172

19.2 Variable Declarations and Definitions . 173

19.3 Type Declarations and Type Aliases . 174

19.4 Type Parameters . 176

19.5 Function Declarations and Definitions 178

19.6 Overloaded Definitions . 180

19.7 Import Clauses . 180

20 Classes and Objects 183

20.1 Templates . 183

20.1.1 Constructor Invocations . 184

20.1.2 Base Classes . 184

20.1.3 Evaluation . 185

20.1.4 Template Members . 186

20.1.5 Overriding . 186

20.1.6 Modifiers . 187

20.1.7 Attributes . 189

CONTENTS vii

20.2 Class Definitions . 190

20.2.1 Constructor Definitions . 191

20.2.2 Case Classes . 192

20.3 Traits . 194

20.4 Object Definitions . 195

21 Expressions 197

21.1 Literals . 198

21.2 Designators . 199

21.3 This and Super . 199

21.4 Function Applications . 201

21.5 Type Applications . 202

21.6 References to Overloaded Bindings . 202

21.7 Instance Creation Expressions . 204

21.8 Blocks . 204

21.9 Prefix, Infix, and Postfix Operations . 205

21.10Typed Expressions . 206

21.11Method closures . 207

21.12Assignments . 207

21.13Conditional Expressions . 209

21.14While Loop Expressions . 209

21.15Do Loop Expressions . 210

21.16Comprehensions . 210

21.17Return Expressions . 212

21.18Throw Expressions . 212

21.19Try Expressions . 213

21.20Anonymous Functions . 213

21.21Statements . 214

22 Pattern Matching 217

22.1 Patterns . 217

22.1.1 Regular Pattern Matching . 219

22.2 Pattern Matching Expressions . 221

viii CONTENTS

23 Views 223

23.1 View Definition . 223

23.2 View Application . 223

23.3 Finding Views . 224

23.4 View-Bounds . 225

23.5 Conditional Views . 228

24 Top-Level Definitions 229

24.1 Packagings . 229

25 Local Type Inference 231

26 XML expressions and patterns 233

26.1 XML expressions . 233

26.2 XML patterns . 235

27 The Scala Standard Library 237

27.1 Root Classes . 237

27.2 Value Classes . 239

27.2.1 Class Double . 239

27.2.2 Class Float . 239

27.2.3 Class Long . 240

27.2.4 Class Int . 240

27.2.5 Class Short . 241

27.2.6 Class Char . 241

27.2.7 Class Short . 241

27.2.8 Class Boolean . 242

27.2.9 Class Unit . 242

27.3 Standard Reference Classes . 242

27.3.1 Class String . 242

27.3.2 The Tuple classes . 243

27.3.3 The Function Classes . 243

27.3.4 Class Array . 243

27.4 The Predef Object . 244

27.5 Class Node . 245

CONTENTS ix

A Scala Syntax Summary 249

B Implementation Status 255

I RATIONALE

3

There are hundreds of programming languages in active use, and many more are
being designed each year. It is therefore hard to justify the development of yet an-
other language. Nevertheless, this is what we attempt to do here. Our argument is
based on two claims:

Claim 1: The raise in importance of web services and other distributed soft-
ware is a fundamental paradigm shift in programming. It is comparable in
scale to the shift 20 years ago from character-oriented to graphical user inter-
faces.

Claim 2: That paradigm shift will provide demand for new programming lan-
guages, just as graphical user interfaces promoted the adoption of object-
oriented languages.

For the last 20 years, the most common programming model was object-oriented:
System components are objects, and computation is done by method calls. Meth-
ods themselves take object references as parameters. Remote method calls let one
extend this programming model to distributed systems. The problem of this model
is that it does not scale up very well to wide-scale networks where messages can be
delayed and components may fail. Web services address the message delay prob-
lem by increasing granularity, using method calls with larger, structured arguments,
such as XML trees. They address the failure problem by using transparent replica-
tion and avoiding server state. Conceptually, they are tree transformers that con-
sume incoming message documents and produce outgoing ones.

Why should this have an effect on programming languages? There are at least two
reasons: First, today’s object-oriented languages are not very good at analyzing and
transforming XML trees. Because such trees usually contain data but no methods,
they have to be decomposed and constructed from the “outside”, that is from code
which is external to the tree definition itself. In an object-oriented language, the
ways of doing so are limited. The most common solution [W3Ca] is to represent
trees in a generic way, where all tree nodes are values of a common type. This
makes it easy to write generic traversal functions, but forces applications to operate
on a very low conceptual level, which often loses important semantic distinctions
present in the XML data. More semantic precision is obtained if different internal
types model different kinds of nodes. But then tree decompositions require the use
of run-time type tests and type casts to adapt the treatment to the kind of node en-
countered. Such type tests and type casts are generally not considered good object-
oriented style. They are rarely efficient, nor easy to use.

Conceivably, the glue problem could be addressed by a “multi-paradigm” language
that would express object-oriented, concurrent, as well as functional aspects of
an application. But one needs to be careful not to simply replace cross-language
glue by awkward interfaces between different paradigms within the language it-
self. Ideally, one would hope for a fusion which unifies concepts found in different
paradigms instead of an agglutination, which merely includes them side by side.

4

This fusion is what we try to achieve with Scala 1.

Scala is both an object-oriented and functional language. It is a pure object-
oriented language in the sense that every value is an object. Types and behavior
of objects are described by classes. Classes can be composed using mixin com-
position. Scala is designed work seamlessly with mainstream object-oriented lan-
guages, in particular Java and C#.

Scala is also a functional language in the sense that every function is a value. Nesting
of function definitions and higher-order functions are naturally supported. Scala
also supports a general notion of pattern matching which can model the alge-
braic types used in many functional languages. Furthermore, this notion of pattern
matching naturally extends to the processing of XML data.

The design of Scala is driven by the desire to unify object-oriented and functional
elements. Here are three examples how this is achieved:

• Since every function is a value and every value is an object, it follows that
every function in Scala is an object. Indeed, there is a root class for functions
which is specialized in the Scala standard library to data structures such as
arrays and hash tables.

• Data structures in many functional languages are defined using algebraic data
types. They are decomposed using pattern matching. Object-oriented lan-
guages, on the other hand, describe data with class hierarchies. Algebraic data
types are usually closed, in that the range of alternatives of a type is fixed when
the type is defined. By contrast, class hierarchies can be extended by adding
new leaf classes. Scala adopts the object-oriented class hierarchy scheme for
data definitions, but allows pattern matching against values coming from a
whole class hierarchy, not just values of a single type. This can express both
closed and extensible data types, and also provides a convenient way to ex-
ploit run-time type information in cases where static typing is too restrictive.

• Module systems of functional languages such as SML or Caml excel in abstrac-
tion; they allow very precise control over visibility of names and types, includ-
ing the ability to partially abstract over types. By contrast, object-oriented
languages excel in composition; they offer several composition mechanisms
lacking in module systems, including inheritance and unlimited recursion be-
tween objects and classes. Scala unifies the notions of object and module, of
module signature and interface, as well as of functor and class. This combines
the abstraction facilities of functional module systems with the composition
constructs of object-oriented languages. The unification is made possible by
means of a new type system based on path-dependent types [OCRZ03].

There are several other languages that try to bridge the gap between the functional
and object oriented paradigms. Smalltalk[GR83], Python[vRD03], or Ruby[Mat01]

1Scala stands for “Scalable Language”. The term means “Stairway” in Italian

5

come to mind. Unlike these languages, Scala has an advanced static type system,
which contains several innovative constructs. This aspect makes the Scala defini-
tion a bit more complicated than those of the languages above. On the other hand,
Scala enjoys the robustness, safety and scalability benefits of strong static typing.
Furthermore, Scala incorporates recent advances in type inference, so that exces-
sive type annotations in user programs can usually be avoided.

Acknowledgments. Many people have contributed to the definition and imple-
mentation of the Scala language and to parts of this book. First of all, I would like
to thank the Scala team at EPFL consisting of Philippe Altherr, Vincent Cremet, Bu-
rak Emir, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. They put a lot of effort in the Scala compiler, tools, and documen-
tation and have contributed in an essential way to the specification of the Scala
language through many observations, clever suggestions, and discussions. Mem-
bers of the team have also contributed examples in this book, as well as parts of the
specification. Phil Bagwell, Gilad Bracha, Erik Ernst, Erik Mejer, Benjamin Pierce,
Enno Runne, and Phil Wadler have given very useful feedback on the Scala design.

The documentation ows a great debt to Abelson’s and Sussman’s wonderful book
“Structure and Interpretation of Computer Programs”[ASS96]. I have adapted sev-
eral of their examples and exercises in the “Scala By Example” part of this book. Of
course, the working language has in each case been changed from Scheme to Scala.
Furthermore, the examples make use of Scala’s object-oriented constructs where
appropriate.

II SCALA BY EXAMPLE

9

Scala is a programming language that fuses elements from object-oriented and
functional programming. This part introduces Scala in an informal way, through
a sequence of examples.

Chapters 1 and 2 highlight some of the features that make Scala interesting. The fol-
lowing chapters introduce the language constructs of Scala in a more thorough way,
starting with simple expressions and functions, and working up through objects
and classes, lists and streams, mutable state, pattern matching to more complete
examples that show interesting programming techniques. The present informal ex-
position is complemented by the Scala Language Reference Manual which specifies
Scala in a more detailed and precise way.

Chapter 1

A First Example

As a first example, here is an implementation of Quicksort in Scala.

def sort(xs: Array[int]): unit = {
def swap(i: int, j: int): unit = {
val t = xs(i); xs(i) = xs(j); xs(j) = t;

}
def sort1(l: int, r: int): unit = {
val pivot = xs((l + r) / 2);
var i = l, j = r;
while (i <= j) {
while (xs(i) < pivot) { i = i + 1 }
while (xs(j) > pivot) { j = j - 1 }
if (i <= j) {
swap(i, j);
i = i + 1;
j = j - 1;

}
}
if (l < j) sort1(l, j);
if (j < r) sort1(i, r);

}
sort1(0, xs.length - 1);

}

The implementation looks quite similar to what one would write in Java or C. We
use the same operators and similar control structures. There are also some minor
syntactical differences. In particular:

• Definitions start with a reserved word. Function definitions start with def,
variable definitions start with var and definitions of values (i.e. read only vari-
ables) start with val.

12 A First Example

• The declared type of a symbol is given after the symbol and a colon. The de-
clared type can often be omitted, because the compiler can infer it from the
context.

• We use unit instead of void to define the result type of a procedure.

• Array types are written Array[T] rather than T[], and array selections are writ-
ten a(i) rather than a[i].

• Functions can be nested inside other functions. Nested functions can access
parameters and local variables of enclosing functions. For instance, the name
of the array a is visible in functions swap and sort1, and therefore need not be
passed as a parameter to them.

So far, Scala looks like a fairly conventional language with some syntactic peculiar-
ities. In fact it is possible to write programs in a conventional imperative or object-
oriented style. This is important because it is one of the things that makes it easy
to combine Scala components with components written in mainstream languages
such as Java, C# or Visual Basic.

However, it is also possible to write programs in a style which looks completely dif-
ferent. Here is Quicksort again, this time written in functional style.

def sort(xs: List[int]): List[int] =
if (xs.length <= 1) xs
else {
val pivot = xs(xs.length / 2);
sort(xs.filter(x => x < pivot))
::: xs.filter(x => x == pivot)
::: sort(xs.filter(x => x > pivot))

}

The functional program works with lists instead of arrays.1 It captures the essence
of the quicksort algorithm in a concise way:

• If the list is empty or consists of a single element, it is already sorted, so return
it immediately.

• If the list is not empty, pick an an element in the middle of it as a pivot.

• Partition the lists into two sub-lists containing elements that are less than,
respectively greater than the pivot element, and a third list which contains
elements equal to pivot.

• Sort the first two sub-lists by a recursive invocation of the sort function.2

1In a future complete implementation of Scala, we could also have used arrays instead of lists,
but at the moment arrays do not yet support filter and :::.

2This is not quite what the imperative algorithm does; the latter partitions the array into two
sub-arrays containing elements less than or greater or equal to pivot.

13

• The result is obtained by appending the three sub-lists together.

Both the imperative and the functional implementation have the same asymptotic
complexity – O(N log (N)) in the average case and O(N2) in the worst case. But
where the imperative implementation operates in place by modifying the argument
array, the functional implementation returns a new sorted list and leaves the argu-
ment list unchanged. The functional implementation thus requires more transient
memory than the imperative one.

The functional implementation makes it look like Scala is a language that’s special-
ized for functional operations on lists. In fact, it is not; all of the operations used
in the example are simple library methods of a class List[t] which is part of the
standard Scala library, and which itself is implemented in Scala.

In particular, there is the method filter which takes as argument a predicate func-
tion that maps list elements to boolean values. The result of filter is a list consist-
ing of all the elements of the original list for which the given predicate function is
true. The filter method of an object of type List[t] thus has the signature

def filter(p: t => boolean): List[t]

Here, t => boolean is the type of functions that take an element of type t and return
a boolean. Functions like filter that take another function as argument or return
one as result are called higher-order functions.

In the quicksort program, filter is applied three times to an anonymous function
argument. The first argument, x => x <= pivot represents the function that maps
its parameter x to the boolean value x <= pivot. That is, it yields true if x is smaller
or equal than pivot, false otherwise. The function is anonymous, i.e. it is not de-
fined with a name. The type of the x parameter is omitted because a Scala compiler
can infer it automatically from the context where the function is used. To summa-
rize, xs.filter(x => x <= pivot) returns a list consisting of all elements of the list
xs that are smaller than pivot.

An object of type List[t] also has a method “:::” which takes an another list and
which returns the result of appending this list to itself. This method has the signa-
ture

def :::(that: List[t]): List[t]

Scala does not distinguish between identifiers and operator names. An identifier
can be either a sequence of letters and digits which begins with a letter, or it can
be a sequence of special characters, such as “+”, “*”, or “:”. The last definition thus
introduced a new method identifier “:::”. This identifier is used in the Quicksort
example as a binary infix operator that connects the two sub-lists resulting from
the partition. In fact, any method can be used as an operator in Scala. The binary
operation E op E ′ is always interpreted as the method call E .op(E ′). This holds also
for binary infix operators which start with a letter. The recursive call to sort in the

14 A First Example

last quicksort example is thus equivalent to

sort(a.filter(x => x < pivot))
.:::(sort(a.filter(x => x == pivot)))
.:::(sort(a.filter(x => x > pivot)))

Looking again in detail at the first, imperative implementation of Quicksort, we find
that many of the language constructs used in the second solution are also present,
albeit in a disguised form.

For instance, “standard” binary operators such as +, -, or < are not treated in any
special way. Like append, they are methods of their left operand. Consequently, the
expression i + 1 is regarded as the invocation i.+(1) of the + method of the integer
value x. Of course, a compiler is free (if it is moderately smart, even expected) to
recognize the special case of calling the + method over integer arguments and to
generate efficient inline code for it.

For efficiency and better error diagnostics the while loop is a primitive construct in
Scala. But in principle, it could have just as well been a predefined function. Here is
a possible implementation of it:

def While (def p: boolean) (def s: unit): unit =
if (p) { s ; While(p)(s) }

The While function takes as first parameter a test function, which takes no parame-
ters and yields a boolean value. As second parameter it takes a command function
which also takes no parameters and yields a trivial result. While invokes the com-
mand function as long as the test function yields true.

Chapter 2

Programming with Actors and Mes-
sages

Here’s an example that shows an application area for which Scala is particularly well
suited. Consider the task of implementing an electronic auction service. We use
an Erlang-style actor process model to implement the participants of the auction.
Actors are objects to which messages are sent. Every process has a “mailbox” of
its incoming messages which is represented as a queue. It can work sequentially
through the messages in its mailbox, or search for messages matching some pattern.

For every traded item there is an auctioneer process that publishes information
about the traded item, that accepts offers from clients and that communicates with
the seller and winning bidder to close the transaction. We present an overview of a
simple implementation here.

As a first step, we define the messages that are exchanged during an auction. There
are two abstract base classes (called traits): AuctionMessage for messages from
clients to the auction service, and AuctionReply for replies from the service to the
clients. For both base classes there exists a number of cases, which are defined in
Figure 2.1.

For each base class, there are a number of case classes which define the format of
particular messages in the class. These messages might well be ultimately mapped
to small XML documents. We expect automatic tools to exist that convert between
XML documents and internal data structures like the ones defined above.

Figure 2.2 presents a Scala implementation of a class Auction for auction processes
that coordinate the bidding on one item. Objects of this class are created by indi-
cating

• a seller process which needs to be notified when the auction is over,

• a minimal bid,

• the date when the auction is to be closed.

16 Programming with Actors and Messages

trait AuctionMessage;
case class Offer(bid: int, client: Actor) extends AuctionMessage;
case class Inquire(client: Actor) extends AuctionMessage;

trait AuctionReply;
case class Status(asked: int, expire: Date) extends AuctionReply;
case object BestOffer extends AuctionReply;
case class BeatenOffer(maxBid: int) extends AuctionReply;
case class AuctionConcluded(seller: Actor, client: Actor)

extends AuctionReply;
case object AuctionFailed extends AuctionReply;
case object AuctionOver extends AuctionReply;

Listing 2.1: Implementation of an Auction Service

The process behavior is defined by its run method. That method repeatedly selects
(using receiveWithin) a message and reacts to it, until the auction is closed, which
is signaled by a TIMEOUT message. Before finally stopping, it stays active for another
period determined by the timeToShutdown constant and replies to further offers that
the auction is closed.

Here are some further explanations of the constructs used in this program:

• The receiveWithin method of class Actor takes as parameters a time span
given in milliseconds and a function that processes messages in the mailbox.
The function is given by a sequence of cases that each specify a pattern and
an action to perform for messages matching the pattern. The receiveWithin

method selects the first message in the mailbox which matches one of these
patterns and applies the corresponding action to it.

• The last case of receiveWithin is guarded by a TIMEOUT pattern. If no other
messages are received in the meantime, this pattern is triggered after the time
span which is passed as argument to the enclosing receiveWithin method.
TIMEOUT is a particular instance of class Message, which is triggered by the
Actor implementation itself.

• Reply messages are sent using syntax of the form
destination send SomeMessage. send is used here as a binary operator
with a process and a message as arguments. This is equivalent in Scala to the
method call destination.send(SomeMessage), i.e. the invocation of the send

of the destination process with the given message as parameter.

The preceding discussion gave a flavor of distributed programming in Scala. It
might seem that Scala has a rich set of language constructs that support actor pro-
cesses, message sending and receiving, programming with timeouts, etc. In fact, the

17

class Auction(seller: Actor, minBid: int, closing: Date) extends Actor {
val timeToShutdown = 36000000; // msec
val bidIncrement = 10;
override def run() = {
var maxBid = minBid - bidIncrement;
var maxBidder: Actor = _;
var running = true;
while (running) {
receiveWithin ((closing.getTime() - new Date().getTime())) {
case Offer(bid, client) =>
if (bid >= maxBid + bidIncrement) {
if (maxBid >= minBid) maxBidder send BeatenOffer(bid);
maxBid = bid; maxBidder = client; client send BestOffer;

} else {
client send BeatenOffer(maxBid);

}
case Inquire(client) =>
client send Status(maxBid, closing);

case TIMEOUT =>
if (maxBid >= minBid) {
val reply = AuctionConcluded(seller, maxBidder);
maxBidder send reply; seller send reply;

} else {
seller send AuctionFailed;

}
receiveWithin(timeToShutdown) {
case Offer(_, client) => client send AuctionOver
case TIMEOUT => running = false;

}
}

}
}

}

Listing 2.2: Implementation of an Auction Service

18 Programming with Actors and Messages

opposite is true. All the constructs discussed above are offered as methods in the li-
brary class Actor. That class is itself implemented in Scala, based on the underlying
thread model of the host language (e.g. Java, or .NET). The implementation of all
features of class Actor used here is given in Section 15.11.

The advantages of the library-based approach are relative simplicity of the core lan-
guage and flexibility for library designers. Because the core language need not spec-
ify details of high-level process communication, it can be kept simpler and more
general. Because the particular model of messages in a mailbox is a library module,
it can be freely modified if a different model is needed in some applications. The
approach requires however that the core language is expressive enough to provide
the necessary language abstractions in a convenient way. Scala has been designed
with this in mind; one of its major design goals was that it should be flexible enough
to act as a convenient host language for domain specific languages implemented
by library modules. For instance, the actor communication constructs presented
above can be regarded as one such domain specific language, which conceptually
extends the Scala core.

Chapter 3

Expressions and Simple Functions

The previous examples gave an impression of what can be done with Scala. We now
introduce its constructs one by one in a more systematic fashion. We start with the
smallest level, expressions and functions.

3.1 Expressions And Simple Functions

A Scala system comes with an interpreter which can be seen as a fancy calculator.
A user interacts with the calculator by typing in expressions. The calculator returns
the evaluation results and their types. Example:

> 87 + 145
232: scala.Int

> 5 + 2 * 3
11: scala.Int

> "hello" + " world!"
hello world: scala.String

It is also possible to name a sub-expression and use the name instead of the expres-
sion afterwards:

> def scale = 5
def scale: int

> 7 * scale
35: scala.Int

> def pi = 3.141592653589793
def pi: scala.Double

20 Expressions and Simple Functions

> def radius = 10
def radius: scala.Int

> 2 * pi * radius
62.83185307179586: scala.Double

Definitions start with the reserved word def; they introduce a name which stands
for the expression following the = sign. The interpreter will answer with the intro-
duced name and its type.

Executing a definition such as def x = e will not evaluate the expression e. In-
stead e is evaluated whenever x is used. Alternatively, Scala offers a value defini-
tion val x = e, which does evaluate the right-hand-side e as part of the evaluation
of the definition. If x is then used subsequently, it is immediately replaced by the
pre-computed value of e, so that the expression need not be evaluated again.

How are expressions evaluated? An expression consisting of operators and
operands is evaluated by repeatedly applying the following simplification steps.

• pick the left-most operation

• evaluate its operands

• apply the operator to the operand values.

A name defined by def is evaluated by replacing the name by the (unevaluated)
definition’s right hand side. A name defined by val is evaluated by replacing the
name by the value of the definitions’s right-hand side. The evaluation process stops
once we have reached a value. A value is some data item such as a string, a number,
an array, or a list.

Example 3.1.1 Here is an evaluation of an arithmetic expression.

(2 * pi) * radius
→ (2 * 3.141592653589793) * radius
→ 6.283185307179586 * radius
→ 6.283185307179586 * 10
→ 62.83185307179586

The process of stepwise simplification of expressions to values is called reduction.

3.2 Parameters

Using def, one can also define functions with parameters. Example:

3.2 Parameters 21

> def square(x: double) = x * x
def (x: double): scala.Double

> square(2)
4.0: scala.Double

> square(5 + 3)
64.0: scala.Double

> square(square(4))
256.0: scala.Double

> def sumOfSquares(x: double, y: double) = square(x) + square(y)
def sumOfSquares(scala.Double,scala.Double): scala.Double

> sumOfSquares(3, 2 + 2)
25.0: scala.Double

Function parameters follow the function name and are always enclosed in paren-
theses. Every parameter comes with a type, which is indicated following the param-
eter name and a colon. At the present time, we only need basic numeric types such
as the type scala.Double of double precision numbers. Scala defines type aliases for
some standard types, so we can write numeric types as in Java. For instance double

is a type alias of scala.Double and int is a type alias for scala.Int.

Functions with parameters are evaluated analogously to operators in expressions.
First, the arguments of the function are evaluated (in left-to-right order). Then, the
function application is replaced by the function’s right hand side, and at the same
time all formal parameters of the function are replaced by their corresponding ac-
tual arguments.

Example 3.2.1

sumOfSquares(3, 2+2)
→ sumOfSquares(3, 4)
→ square(3) + square(4)
→ 3 * 3 + square(4)
→ 9 + square(4)
→ 9 + 4 * 4
→ 9 + 16
→ 25

The example shows that the interpreter reduces function arguments to values be-
fore rewriting the function application. One could instead have chosen to apply the
function to unreduced arguments. This would have yielded the following reduction
sequence:

22 Expressions and Simple Functions

sumOfSquares(3, 2+2)
→ square(3) + square(2+2)
→ 3 * 3 + square(2+2)
→ 9 + square(2+2)
→ 9 + (2+2) * (2+2)
→ 9 + 4 * (2+2)
→ 9 + 4 * 4
→ 9 + 16
→ 25

The second evaluation order is known as call-by-name, whereas the first one is
known as call-by-value. For expressions that use only pure functions and that there-
fore can be reduced with the substitution model, both schemes yield the same final
values.

Call-by-value has the advantage that it avoids repeated evaluation of arguments.
Call-by-name has the advantage that it avoids evaluation of arguments when the
parameter is not used at all by the function. Call-by-value is usually more efficient
than call-by-name, but a call-by-value evaluation might loop where a call-by-name
evaluation would terminate. Consider:

> def loop: int = loop
def loop: scala.Int

> def first(x: int, y: int) = x
def first(x: scala.Int, y: scala.Int): scala.Int

Then first(1, loop) reduces with call-by-name to 1, whereas the same term re-
duces with call-by-value repeatedly to itself, hence evaluation does not terminate.

first(1, loop)
→ first(1, loop)
→ first(1, loop)
→ ...

Scala uses call-by-value by default, but it switches to call-by-name evaluation if the
parameter is preceded by def.

Example 3.2.2

> def constOne(x: int, def y: int) = 1
constOne(x: scala.Int, def y: scala.Int): scala.Int

> constOne(1, loop)
1: scala.Int

> constOne(loop, 2) // gives an infinite loop.

3.3 Conditional Expressions 23

^C

3.3 Conditional Expressions

Scala’s if-else lets one choose between two alternatives. Its syntax is like Java’s
if-else. But where Java’s if-else can be used only as an alternative of state-
ments, Scala allows the same syntax to choose between two expressions. That’s
why Scala’s if-else serves also as a substitute for Java’s conditional expression
... ? ... :

Example 3.3.1

> def abs(x: double) = if (x >= 0) x else -x
abs(x: double): double

Scala’s boolean expressions are similar to Java’s; they are formed from the constants
true and false, comparison operators, boolean negation ! and the boolean opera-
tors && and ||.

3.4 Example: Square Roots by Newton’s Method

We now illustrate the language elements introduced so far in the construction of a
more interesting program. The task is to write a function

def sqrt(x: double): double = ...

which computes the square root of x.

A common way to compute square roots is by Newton’s method of successive ap-
proximations. One starts with an initial guess y (say: y = 1). One then repeatedly
improves the current guess y by taking the average of y and x/y. As an example, the
next three columns indicate the guess y, the quotient x/y, and their average for the
first approximations of

p
2.

1 2/1 = 2 1.5
1.5 2/1.5 = 1.3333 1.4167
1.4167 2/1.4167 = 1.4118 1.4142
1.4142

y x/y (y +x/y)/2

One can implement this algorithm in Scala by a set of small functions, which each
represent one of the elements of the algorithm.

We first define a function for iterating from a guess to the result:

24 Expressions and Simple Functions

def sqrtIter(guess: double, x: double): double =
if (isGoodEnough(guess, x)) guess
else sqrtIter(improve(guess, x), x);

Note that sqrtIter calls itself recursively. Loops in imperative programs can always
be modeled by recursion in functional programs.

Note also that the definition of sqrtIter contains a return type, which follows the
parameter section. Such return types are mandatory for recursive functions. For a
non-recursive function, the return type is optional; if it is missing the type checker
will compute it from the type of the function’s right-hand side. However, even for
non-recursive functions it is often a good idea to include a return type for better
documentation.

As a second step, we define the two functions called by sqrtIter: a function to
improve the guess and a termination test isGoodEnough. Here is their definition.

def improve(guess: double, x: double) =
(guess + x / guess) / 2;

def isGoodEnough(guess: double, x: double) =
abs(square(guess) - x) < 0.001;

Finally, the sqrt function itself is defined by an application of sqrtIter.

def sqrt(x: double) = sqrtIter(1.0, x);

Exercise 3.4.1 The isGoodEnough test is not very precise for small numbers and
might lead to non-termination for very large ones (why?). Design a different ver-
sion of isGoodEnough which does not have these problems.

Exercise 3.4.2 Trace the execution of the sqrt(4) expression.

3.5 Nested Functions

The functional programming style encourages the construction of many small
helper functions. In the last example, the implementation of sqrt made use of the
helper functions sqrtIter, improve and isGoodEnough. The names of these func-
tions are relevant only for the implementation of sqrt. We normally do not want
users of sqrt to access these functions directly.

We can enforce this (and avoid name-space pollution) by including the helper func-
tions within the calling function itself:

def sqrt(x: double) = {
def sqrtIter(guess: double, x: double): double =

3.5 Nested Functions 25

if (isGoodEnough(guess, x)) guess
else sqrtIter(improve(guess, x), x);

def improve(guess: double, x: double) =
(guess + x / guess) / 2;

def isGoodEnough(guess: double, x: double) =
abs(square(guess) - x) < 0.001;

sqrtIter(1.0, x)
}

In this program, the braces { ... } enclose a block. Blocks in Scala are themselves
expressions. Every block ends in a result expression which defines its value. The
result expression may be preceded by auxiliary definitions, which are visible only in
the block itself.

Every definition in a block must be followed by a semicolon, which separates this
definition from subsequent definitions or the result expression. However, a semi-
colon is inserted implicitly if the definition ends in a right brace and is followed by
a new line. Therefore, the following are all legal:

def f(x) = x + 1; /* ‘;’ mandatory */
f(1) + f(2)

def g(x) = {x + 1}
g(1) + g(2)

def h(x) = {x + 1}; /* ‘;’ mandatory */ h(1) + h(2)

Scala uses the usual block-structured scoping rules. A name defined in some outer
block is visible also in some inner block, provided it is not redefined there. This rule
permits us to simplify our sqrt example. We need not pass x around as an additional
parameter of the nested functions, since it is always visible in them as a parameter
of the outer function sqrt. Here is the simplified code:

def sqrt(x: double) = {
def sqrtIter(guess: double): double =
if (isGoodEnough(guess)) guess
else sqrtIter(improve(guess));

def improve(guess: double) =
(guess + x / guess) / 2;

def isGoodEnough(guess: double) =
abs(square(guess) - x) < 0.001;

sqrtIter(1.0)
}

26 Expressions and Simple Functions

3.6 Tail Recursion

Consider the following function to compute the greatest common divisor of two
given numbers.

def gcd(a: int, b: int): int = if (b == 0) a else gcd(b, a % b)

Using our substitution model of function evaluation, gcd(14, 21) evaluates as fol-
lows:

gcd(14, 21)
→ if (21 == 0) 14 else gcd(21, 14 % 21)
→ if (false) 14 else gcd(21, 14 % 21)
→ gcd(21, 14 % 21)
→ gcd(21, 14)
→ if (14 == 0) 21 else gcd(14, 21 % 14)
→ → gcd(14, 21 % 14)
→ gcd(14, 7)
→ if (7 == 0) 14 else gcd(7, 14 % 7)
→ → gcd(7, 14 % 7)
→ gcd(7, 0)
→ if (0 == 0) 7 else gcd(0, 7 % 0)
→ → 7

Contrast this with the evaluation of another recursive function, factorial:

def factorial(n: int): int = if (n == 0) 1 else n * factorial(n - 1)

The application factorial(5) rewrites as follows:

factorial(5)
→ if (5 == 0) 1 else 5 * factorial(5 - 1)
→ 5 * factorial(5 - 1)
→ 5 * factorial(4)
→ . . . → 5 * (4 * factorial(3))
→ . . . → 5 * (4 * (3 * factorial(2)))
→ . . . → 5 * (4 * (3 * (2 * factorial(1))))
→ . . . → 5 * (4 * (3 * (2 * (1 * factorial(0))))
→ . . . → 5 * (4 * (3 * (2 * (1 * 1))))
→ . . . → 120

There is an important difference between the two rewrite sequences: The terms in
the rewrite sequence of gcd have again and again the same form. As evaluation pro-
ceeds, their size is bounded by a constant. By contrast, in the evaluation of factorial
we get longer and longer chains of operands which are then multiplied in the last
part of the evaluation sequence.

3.6 Tail Recursion 27

Even though actual implementations of Scala do not work by rewriting terms, they
nevertheless should have the same space behavior as in the rewrite sequences. In
the implementation of gcd, one notes that the recursive call to gcd is the last action
performed in the evaluation of its body. One also says that gcd is “tail-recursive”.
The final call in a tail-recursive function can be implemented by a jump back to the
beginning of that function. The arguments of that call can overwrite the parameters
of the current instantiation of gcd, so that no new stack space is needed. Hence,
tail recursive functions are iterative processes, which can be executed in constant
space.

By contrast, the recursive call in factorial is followed by a multiplication. Hence,
a new stack frame is allocated for the recursive instance of factorial, and is deallo-
cated after that instance has finished. The given formulation of the factorial func-
tion is not tail-recursive; it needs space proportional to its input parameter for its
execution.

More generally, if the last action of a function is a call to another (possibly the same)
function, only a single stack frame is needed for both functions. Such calls are called
“tail calls”. In principle, tail calls can always re-use the stack frame of the calling
function. However, some run-time environments (such as the Java VM) lack the
primitives to make stack frame re-use for tail calls efficient. A production quality
Scala implementation is therefore only required to re-use the stack frame of a di-
rectly tail-recursive function whose last action is a call to itself. Other tail calls might
be optimized also, but one should not rely on this across implementations.

Exercise 3.6.1 Design a tail-recursive version of factorial.

Chapter 4

First-Class Functions

A function in Scala is a “first-class value”. Like any other value, it may be passed as
a parameter or returned as a result. Functions which take other functions as pa-
rameters or return them as results are called higher-order functions. This chapter
introduces higher-order functions and shows how they provide a flexible mecha-
nism for program composition.

As a motivating example, consider the following three related tasks:

1. Write a function to sum all integers between two given numbers a and b:

def sumInts(a: int, b: int): int =
if (a > b) 0 else a + sumInts(a + 1, b)

2. Write a function to sum the squares of all integers between two given numbers
a and b:

def square(x: int): int = x * x;
def sumSquares(a: int, b: int): int =
if (a > b) 0 else square(a) + sumSquares(a + 1, b)

3. Write a function to sum the powers 2n of all integers n between two given
numbers a and b:

def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x - 1);
def sumPowersOfTwo(a: int, b: int): int =
if (a > b) 0 else powerOfTwo(a) + sumPowersOfTwo(a + 1, b)

These functions are all instances of
∑b

a f (n) for different values of f . We can factor
out the common pattern by defining a function sum:

def sum(f: int => int, a: int, b: int): double =
if (a > b) 0 else f(a) + sum(f, a + 1, b)

30 First-Class Functions

The type int => int is the type of functions that take arguments of type int and
return results of type int. So sum is a function which takes another function as a
parameter. In other words, sum is a higher-order function.

Using sum, we can formulate the three summing functions as follows.

def sumInts(a: int, b: int): int = sum(id, a, b);
def sumSquares(a: int, b: int): int = sum(square, a, b);
def sumPowersOfTwo(a: int, b: int): int = sum(powerOfTwo, a, b);

where

def id(x: int): int = x;
def square(x: int): int = x * x;
def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x - 1);

4.1 Anonymous Functions

Parameterization by functions tends to create many small functions. In the previous
example, we defined id, square and power as separate functions, so that they could
be passed as arguments to sum.

Instead of using named function definitions for these small argument functions, we
can formulate them in a shorter way as anonymous functions. An anonymous func-
tion is an expression that evaluates to a function; the function is defined without
giving it a name. As an example consider the anonymous square function:

x: int => x * x

The part before the arrow ‘=>’ is the parameter of the function, whereas the part
following the ‘=>’ is its body. If there are several parameters, we need to enclose
them in parentheses. For instance, here is an anonymous function which multiples
its two arguments.

(x: int, y: int) => x * y

Using anonymous functions, we can reformulate the first two summation functions
without named auxiliary functions:

def sumInts(a: int, b: int): int = sum(x: int => x, a, b);
def sumSquares(a: int, b: int): int = sum(x: int => x * x, a, b);

Often, the Scala compiler can deduce the parameter type(s) from the context of the
anonymous function in which case they can be omitted. For instance, in the case
of sumInts or sumSquares, one knows from the type of sum that the first parameter
must be a function of type int => int. Hence, the parameter type int is redundant

4.2 Currying 31

and may be omitted:

def sumInts(a: int, b: int): int = sum(x => x, a, b);
def sumSquares(a: int, b: int): int = sum(x => x * x, a, b);

Generally, the Scala term (x1: T1, ..., xn: Tn) => E defines a function which
maps its parameters x1, ..., xn to the result of the expression E (where E may
refer to x1, ..., xn). Anonymous functions are not essential language elements
of Scala, as they can always be expressed in terms of named functions. Indeed, the
anonymous function

(x1: T1, ..., xn: Tn) => E

is equivalent to the block

{ def f (x1: T1, ..., xn: Tn) = E ; f }

where f is fresh name which is used nowhere else in the program. We also say,
anonymous functions are “syntactic sugar”.

4.2 Currying

The latest formulation of the summing functions is already quite compact. But we
can do even better. Note that a and b appear as parameters and arguments of every
function but they do not seem to take part in interesting combinations. Is there a
way to get rid of them?

Let’s try to rewrite sum so that it does not take the bounds a and b as parameters:

def sum(f: int => int) = {
def sumF(a: int, b: int): int =
if (a > b) 0 else f(a) + sumF(a + 1, b);

sumF
}

In this formulation, sum is a function which returns another function, namely the
specialized summing function sumF. This latter function does all the work; it takes
the bounds a and b as parameters, applies sum’s function parameter f to all integers
between them, and sums up the results.

Using this new formulation of sum, we can now define:

def sumInts = sum(x => x);
def sumSquares = sum(x => x * x);
def sumPowersOfTwo = sum(powerOfTwo);

Or, equivalently, with value definitions:

32 First-Class Functions

val sumInts = sum(x => x);
val sumSquares = sum(x => x * x);
val sumPowersOfTwo = sum(powerOfTwo);

These functions can be applied like other functions. For instance,

> sumSquares(1, 10) + sumPowersOfTwo(10, 20)
267632001: scala.Int

How are function-returning functions applied? As an example, in the expression

sum(x => x * x)(1, 10) ,

the function sum is applied to the squaring function (x => x * x). The resulting
function is then applied to the second argument list, (1, 10).

This notation is possible because function application associates to the left. That is,
if args1 and args2 are argument lists, then

f (args1)(args2) is equivalent to (f (args1))(args2)

In our example, sum(x => x * x)(1, 10) is equivalent to the following expression:
(sum(x => x * x))(1, 10).

The style of function-returning functions is so useful that Scala has special syntax
for it. For instance, the next definition of sum is equivalent to the previous one, but
is shorter:

def sum(f: int => int)(a: int, b: int): int =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

Generally, a curried function definition

def f (args1) ... (argsn) = E

where n > 1 expands to

def f (args1) ... (argsn−1) = { def g (argsn) = E ; g }

where g is a fresh identifier. Or, shorter, using an anonymous function:

def f (args1) ... (argsn−1) = (argsn) => E .

Performing this step n times yields that

def f (args1) ... (argsn) = E

is equivalent to

def f = (args1) => ... => (argsn) => E .

4.3 Example: Finding Fixed Points of Functions 33

Or, equivalently, using a value definition:

val f = (args1) => ... => (argsn) => E .

This style of function definition and application is called currying after its promoter,
Haskell B. Curry, a logician of the 20th century, even though the idea goes back fur-
ther to Moses Schönfinkel and Gottlob Frege.

The type of a function-returning function is expressed analogously to its param-
eter list. Taking the last formulation of sum as an example, the type of sum is
(int => int) => (int, int) => int. This is possible because function types as-
sociate to the right. I.e.

T1 => T2 => T3 is equivalent to T1 => (T2 => T3)

Exercise 4.2.1 1. The sum function uses a linear recursion. Can you write a tail-
recursive one by filling in the ??’s?

def sum(f: int => double)(a: int, b: int): double = {
def iter(a, result) = {
if (??) ??
else iter(??, ??)

}
iter(??, ??)

}

Exercise 4.2.2 Write a function product that computes the product of the values of
functions at points over a given range.

Exercise 4.2.3 Write factorial in terms of product.

Exercise 4.2.4 Can you write an even more general function which generalizes both
sum and product?

4.3 Example: Finding Fixed Points of Functions

A number x is called a fixed point of a function f if

f(x) = x .

For some functions f we can locate the fixed point by beginning with an initial guess
and then applying f repeatedly, until the value does not change anymore (or the
change is within a small tolerance). This is possible if the sequence

x, f(x), f(f(x)), f(f(f(x))), ...

34 First-Class Functions

converges to fixed point of f . This idea is captured in the following “fixed-point
finding function”:

val tolerance = 0.0001;
def isCloseEnough(x: double, y: double) = abs((x - y) / x) < tolerance;
def fixedPoint(f: double => double)(firstGuess: double) = {
def iterate(guess: double): double = {
val next = f(guess);
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(firstGuess)

}

We now apply this idea in a reformulation of the square root function. Let’s start
with a specification of sqrt:

sqrt(x) = the y such that y * y = x
= the y such that y = x / y

Hence, sqrt(x) is a fixed point of the function y => x / y. This suggests that
sqrt(x) can be computed by fixed point iteration:

def sqrt(x: double) = fixedPoint(y => x / y)(1.0)

But if we try this, we find that the computation does not converge. Let’s instrument
the fixed point function with a print statement which keeps track of the current
guess value:

def fixedPoint(f: double => double)(firstGuess: double) = {
def iterate(guess: double): double = {
val next = f(guess);
System.out.println(next);
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(firstGuess)

}

Then, sqrt(2) yields:

2.0
1.0
2.0
1.0
2.0
...

4.4 Summary 35

One way to control such oscillations is to prevent the guess from changing too
much. This can be achieved by averaging successive values of the original sequence:

> def sqrt(x: double) = fixedPoint(y => (y + x/y) / 2)(1.0)
def sqrt(x: scala.Double): scala.Double
> sqrt(2.0)
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, expanding the fixedPoint function yields exactly our previous definition of
fixed point from Section 3.4.

The previous examples showed that the expressive power of a language is consid-
erably enhanced if functions can be passed as arguments. The next example shows
that functions which return functions can also be very useful.

Consider again fixed point iterations. We started with the observation that
p

(x) is
a fixed point of the function y => x / y. Then we made the iteration converge by
averaging successive values. This technique of average damping is so general that it
can be wrapped in another function.

def averageDamp(f: double => double)(x: double) = (x + f(x)) / 2

Using averageDamp, we can reformulate the square root function as follows.

def sqrt(x: double) = fixedPoint(averageDamp(y => x/y))(1.0)

This expresses the elements of the algorithm as clearly as possible.

Exercise 4.3.1 Write a function for cube roots using fixedPoint and averageDamp.

4.4 Summary

We have seen in the previous chapter that functions are essential abstractions, be-
cause they permit us to introduce general methods of computing as explicit, named
elements in our programming language. The present chapter has shown that these
abstractions can be combined by higher-order functions to create further abstrac-
tions. As programmers, we should look out for opportunities to abstract and to
reuse. The highest possible level of abstraction is not always the best, but it is im-
portant to know abstraction techniques, so that one can use abstractions where ap-
propriate.

36 First-Class Functions

4.5 Language Elements Seen So Far

Chapters 3 and 4 have covered Scala’s language elements to express expressions and
types comprising of primitive data and functions. The context-free syntax of these
language elements is given below in extended Backus-Naur form, where ‘|’ denotes
alternatives, [...] denotes option (0 or 1 occurrence), and {...} denotes repetition
(0 or more occurrences).

Characters

Scala programs are sequences of (Unicode) characters. We distinguish the following
character sets:

• whitespace, such as ‘’, tabulator, or newline characters,

• letters ‘a’ to ‘z’, ‘A’ to ‘Z’,

• digits ‘0’ to ‘9’,

• the delimiter characters

. , ; () { } [] \ " ’

• operator characters, such as ‘#’ ‘+’, ‘:’. Essentially, these are printable charac-
ters which are in none of the character sets above.

Lexemes:

ident = letter {letter | digit}
| operator { operator }
| ident ’_’ ident

literal = “as in Java”

Literals are as in Java. They define numbers, characters, strings, or boolean values.
Examples of literals as 0, 1.0d10, ’x’, "he said "hi!"", or true.

Identifiers can be of two forms. They either start with a letter, which is followed by a
(possibly empty) sequence of letters or symbols, or they start with an operator char-
acter, which is followed by a (possibly empty) sequence of operator characters. Both
forms of identifiers may contain underscore characters ‘_’. Furthermore, an under-
score character may be followed by either sort of identifier. Hence, the following are
all legal identifiers:

x Room10a + -- foldl_: +_vector

It follows from this rule that subsequent operator-identifiers need to be separated
by whitespace. For instance, the input x+-y is parsed as the three token sequence x,

4.5 Language Elements Seen So Far 37

+-, y. If we want to express the sum of x with the negated value of y, we need to add
at least one space, e.g. x+ -y.

The $ character is reserved for compiler-generated identifiers; it should not be used
in source programs.

The following are reserved words, they may not be used as identifiers:

abstract case catch class def
do else extends false final
finally for if import new
null object override package private
protected return sealed super this
trait try true type val
var while with yield
_ : = => <- <: >: # @

Types:

Type = SimpleType | FunctionType
FunctionType = SimpleType ’=>’ Type | ’(’ [Types] ’)’ ’=>’ Type
SimpleType = byte | short | char | int | long | double | float |

boolean | unit | String
Types = Type {‘,’ Type}

Types can be:

• number types byte, short, char, int, long, float and double (these are as in
Java),

• the type boolean with values true and false,

• the type unit with the only value (),

• the type String,

• function types such as (int, int) => int or String => Int => String.

Expressions:

Expr = InfixExpr | FunctionExpr | if ’(’ Expr ’)’ Expr else Expr
InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr
Operator = ident
PrefixExpr = [’+’ | ’-’ | ’!’ | ’~’] SimpleExpr
SimpleExpr = ident | literal | SimpleExpr ’.’ ident | Block
FunctionExpr = Bindings ’=>’ Expr
Bindings = ident [’:’ SimpleType] | ’(’ [Binding {’,’ Binding}] ’)’
Binding = ident [’:’ Type]
Block = ’{’ {Def ’;’} Expr ’}’

38 First-Class Functions

Expressions can be:

• identifiers such as x, isGoodEnough, *, or +-,

• literals, such as 0, 1.0, or "abc",

• field and method selections, such as System.out.println,

• function applications, such as sqrt(x),

• operator applications, such as -x or y + x,

• conditionals, such as if (x < 0) -x else x,

• blocks, such as { val x = abs(y) ; x * 2 },

• anonymous functions, such as x => x + 1 or (x: int, y: int) => x + y.

Definitions:

Def = FunDef | ValDef
FunDef = ’def’ ident {’(’ [Parameters] ’)’} [’:’ Type] ’=’ Expr
ValDef = ’val’ ident [’:’ Type] ’=’ Expr
Parameters = Parameter {’,’ Parameter}
Parameter = [’def’] ident ’:’ Type

Definitions can be:

• function definitions such as def square(x: int): int = x * x,

• value definitions such as val y = square(2).

Chapter 5

Classes and Objects

Scala does not have a built-in type of rational numbers, but it is easy to define one,
using a class. Here’s a possible implementation.

class Rational(n: int, d: int) {
private def gcd(x: int, y: int): int = {
if (x == 0) y
else if (x < 0) gcd(-x, y)
else if (y < 0) -gcd(x, -y)
else gcd(y % x, x);

}
private val g = gcd(n, d);

val numer: int = n/g;
val denom: int = d/g;
def +(that: Rational) =
new Rational(numer * that.denom + that.numer * denom,

denom * that.denom);
def -(that: Rational) =
new Rational(numer * that.denom - that.numer * denom,

denom * that.denom);
def *(that: Rational) =
new Rational(numer * that.numer, denom * that.denom);

def /(that: Rational) =
new Rational(numer * that.denom, denom * that.numer);

}

This defines Rational as a class which takes two constructor arguments n and d,
containing the number’s numerator and denominator parts. The class provides
fields which return these parts as well as methods for arithmetic over rational num-
bers. Each arithmetic method takes as parameter the right operand of the opera-
tion. The left operand of the operation is always the rational number of which the

40 Classes and Objects

method is a member.

Private members. The implementation of rational numbers defines a private
method gcd which computes the greatest common denominator of two integers, as
well as a private field g which contains the gcd of the constructor arguments. These
members are inaccessible outside class Rational. They are used in the implementa-
tion of the class to eliminate common factors in the constructor arguments in order
to ensure that numerator and denominator are always in normalized form.

Creating and Accessing Objects. As an example of how rational numbers can be
used, here’s a program that prints the sum of all numbers 1/i where i ranges from 1
to 10.

var i = 1;
var x = new Rational(0, 1);
while (i <= 10) {
x = x + new Rational(1,i);
i = i + 1;

}
System.out.println("" + x.numer + "/" + x.denom);

The + takes as left operand a string and as right operand a value of arbitrary type. It
returns the result of converting its right operand to a string and appending it to its
left operand.

Inheritance and Overriding. Every class in Scala has a superclass which it ex-
tends. If a class does not mention a superclass in its definition, the root type
scala.AnyRef is implicitly assumed (for Java implementations, this type is an alias
for java.lang.Object. For instance, class Rational could equivalently be defined
as

class Rational(n: int, d: int) extends AnyRef {
... // as before

}

A class inherits all members from its superclass. It may also redefine (or: override)
some inherited members. For instance, class java.lang.Object defines a method
toString which returns a representation of the object as a string:

class Object {
...
def toString(): String = ...

}

41

The implementation of toString in Object forms a string consisting of the object’s
class name and a number. It makes sense to redefine this method for objects that
are rational numbers:

class Rational(n: int, d: int) extends AnyRef {
... // as before
override def toString() = "" + numer + "/" + denom;

}

Note that, unlike in Java, redefining definitions need to be preceded by an override
modifier.

If class A extends class B, then objects of type A may be used wherever objects of
type B are expected. We say in this case that type A conforms to type B. For instance,
Rational conforms to AnyRef, so it is legal to assign a Rational value to a variable
of type AnyRef:

var x: AnyRef = new Rational(1,2);

Parameterless Methods. Unlike in Java, methods in Scala do not necessarily take
a parameter list. An example is the square method below. This method is invoked
by simply mentioning its name.

class Rational(n: int, d: int) extends AnyRef {
... // as before
def square = new Rational(numer*numer, denom*denom);

}
val r = new Rational(3,4);
System.out.println(r.square); // prints‘‘9/16’’*

That is, parameterless methods are accessed just as value fields such as numer are.
The difference between values and parameterless methods lies in their definition.
The right-hand side of a value is evaluated when the object is created, and the value
does not change afterwards. A right-hand side of a parameterless method, on the
other hand, is evaluated each time the method is called. The uniform access of
fields and parameterless methods gives increased flexibility for the implementer of
a class. Often, a field in one version of a class becomes a computed value in the next
version. Uniform access ensures that clients do not have to be rewritten because of
that change.

Abstract Classes. Consider the task of writing a class for sets of integer numbers
with two operations, incl and contains. (s incl x) should return a new set which
contains the element x together with all the elements of set s. (s contains x)

should return true if the set s contains the element x, and should return false oth-
erwise. The interface of such sets is given by:

42 Classes and Objects

abstract class IntSet {
def incl(x: int): IntSet;
def contains(x: int): boolean;

}

IntSet is labeled as an abstract class. This has two consequences. First, abstract
classes may have deferred members which are declared but which do not have an
implementation. In our case, both incl and contains are such members. Second,
because an abstract class might have unimplemented members, no objects of that
class may be created using new. By contrast, an abstract class may be used as a base
class of some other class, which implements the deferred members.

Traits. Instead of abstract class one also often uses the keyword trait in Scala.
A trait is an abstract class with no state, no constructor arguments, and no side ef-
fects during object initialization. Since IntSet’s fall in this category, one can alter-
natively define them as traits:

trait IntSet {
def incl(x: int): IntSet;
def contains(x: int): boolean;

}

A trait corresponds to an interface in Java, except that a trait can also define imple-
mented methods.

Implementing Abstract Classes. Let’s say, we plan to implement sets as binary
trees. There are two possible forms of trees. A tree for the empty set, and a tree
consisting of an integer and two subtrees. Here are their implementations.

class EmptySet extends IntSet {
def contains(x: int): boolean = false;
def incl(x: int): IntSet = new NonEmptySet(x, new EmptySet, new EmptySet);

}

class NonEmptySet(elem:int, left:IntSet, right:IntSet) extends IntSet {
def contains(x: int): boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true;

def incl(x: int): IntSet =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this;

}

43

Both EmptySet and NonEmptySet extend class IntSet. This implies that types
EmptySet and NonEmptySet conform to type IntSet – a value of type EmptySet or
NonEmptySet may be used wherever a value of type IntSet is required.

Exercise 5.0.1 Write methods union and intersection to form the union and in-
tersection between two sets.

Exercise 5.0.2 Add a method

def excl(x: int)

to return the given set without the element x. To accomplish this, it is useful to also
implement a test method

def isEmpty: boolean

for sets.

Dynamic Binding. Object-oriented languages (Scala included) use dynamic dis-
patch for method invocations. That is, the code invoked for a method call depends
on the run-time type of the object which contains the method. For example, con-
sider the expression s contains 7 where s is a value of declared type s: IntSet.
Which code for contains is executed depends on the type of value of s at run-time.
If it is an EmptySet value, it is the implementation of contains in class EmptySet

that is executed, and analogously for NonEmptySet values. This behavior is a direct
consequence of our substitution model of evaluation. For instance,

(new EmptySet).contains(7)

-> (by replacing contains by its body in class EmptySet)

false

Or,

new NonEmptySet(7, new EmptySet, new EmptySet).contains(1)

-> (by replacing contains by its body in class NonEmptySet)

if (1 < 7) new EmptySet contains 1
else if (1 > 7) new EmptySet contains 1
else true

-> (by rewriting the conditional)

new EmptySet contains 1

44 Classes and Objects

-> (by replacing contains by its body in class EmptySet)

false .

Dynamic method dispatch is analogous to higher-order function calls. In both
cases, the identity of code to be executed is known only at run-time. This similarity
is not just superficial. Indeed, Scala represents every function value as an object
(see Section 7.6).

Objects. In the previous implementation of integer sets, empty sets were ex-
pressed with new EmptySet; so a new object was created every time an empty set
value was required. We could have avoided unnecessary object creations by defin-
ing a value empty once and then using this value instead of every occurrence of
new EmptySet. E.g.

val EmptySetVal = new EmptySet;

One problem with this approach is that a value definition such as the one above is
not a legal top-level definition in Scala; it has to be part of another class or object.
Also, the definition of class EmptySet now seems a bit of an overkill – why define
a class of objects, if we are only interested in a single object of this class? A more
direct approach is to use an object definition. Here is a more streamlined alternative
definition of the empty set:

object EmptySet extends IntSet {
def contains(x: int): boolean = false;
def incl(x: int): IntSet = new NonEmptySet(x, EmptySet, EmptySet);

}

The syntax of an object definition follows the syntax of a class definition; it has
an optional extends clause as well as an optional body. As is the case for classes,
the extends clause defines inherited members of the object whereas the body de-
fines overriding or new members. However, an object definition defines a single
object only; it is not possible to create other objects with the same structure using
new. Therefore, object definitions also lack constructor parameters, which might be
present in class definitions.

Object definitions can appear anywhere in a Scala program; including at top-level.
Since there is no fixed execution order of top-level entities in Scala, one might ask
exactly when the object defined by an object definition is created and initialized.
The answer is that the object is created the first time one of its members is accessed.
This strategy is called lazy evaluation.

45

Standard Classes. Scala is a pure object-oriented language. This means that every
value in Scala can be regarded as an object. In fact, even primitive types such as int
or boolean are not treated specially. They are defined as type aliases of Scala classes
in module Predef:

type boolean = scala.Boolean;
type int = scala.Int;
type long = scala.Long;
...

For efficiency, the compiler usually represents values of type scala.Int by 32 bit
integers, values of type scala.Boolean by Java’s booleans, etc. But it converts these
specialized representations to objects when required, for instance when a primitive
int value is passed to a function with a parameter of type AnyRef. Hence, the special
representation of primitive values is just an optimization, it does not change the
meaning of a program.

Here is a specification of class Boolean.

package scala;
trait Boolean {
def && (def x: Boolean): Boolean;
def || (def x: Boolean): Boolean;
def ! : Boolean;

def == (x: Boolean) : Boolean
def != (x: Boolean) : Boolean
def < (x: Boolean) : Boolean
def > (x: Boolean) : Boolean
def <= (x: Boolean) : Boolean
def >= (x: Boolean) : Boolean

}

Booleans can be defined using only classes and objects, without reference to a built-
in type of booleans or numbers. A possible implementation of class Boolean is given
below. This is not the actual implementation in the standard Scala library. For effi-
ciency reasons the standard implementation uses built-in booleans.

package scala;
trait Boolean {
def ifThenElse(def thenpart: Boolean, def elsepart: Boolean)

def && (def x: Boolean): Boolean = ifThenElse(x, false);
def || (def x: Boolean): Boolean = ifThenElse(true, x);
def ! : Boolean = ifThenElse(false, true);

def == (x: Boolean) : Boolean = ifThenElse(x, x.!);

46 Classes and Objects

def != (x: Boolean) : Boolean = ifThenElse(x.!, x);
def < (x: Boolean) : Boolean = ifThenElse(false, x);
def > (x: Boolean) : Boolean = ifThenElse(x.!, false);
def <= (x: Boolean) : Boolean = ifThenElse(x, true);
def >= (x: Boolean) : Boolean = ifThenElse(true, x.!);

}
case object True extends Boolean {
def ifThenElse(def t: Boolean, def e: Boolean) = t

}
case object False extends Boolean {
def ifThenElse(def t: Boolean, def e: Boolean) = e

}

Here is a partial specification of class Int.

package scala;
trait Int extends AnyVal {
def coerce: Long;
def coerce: Float;
def coerce: Double;

def + (that: Double): Double;
def + (that: Float): Float;
def + (that: Long): Long;
def + (that: Int): Int; // analogous for -, *, /, %

def << (cnt: Int): Int; // analogous for >>, >>>

def & (that: Long): Long;
def & (that: Int): Int; // analogous for |, ^

def == (that: Double): Boolean;
def == (that: Float): Boolean;
def == (that: Long): Boolean; // analogous for !=, <, >, <=, >=

}

Class Int can in principle also be implemented using just objects and classes, with-
out reference to a built in type of integers. To see how, we consider a slightly simpler
problem, namely how to implement a type Nat of natural (i.e. non-negative) num-
bers. Here is the definition of a trait Nat:

trait Nat {
def isZero: Boolean;
def predecessor: Nat;
def successor: Nat;
def + (that: Nat): Nat;
def - (that: Nat): Nat;

47

}

To implement the operations of class Nat, we define a sub-object Zero and a sub-
class Succ (for successor). Each number N is represented as N applications of the
Succ constructor to Zero:

new Succ(... new Succ︸ ︷︷ ︸
N times

(Zero) ...)

The implementation of the Zero object is straightforward:

object Zero extends Nat {
def isZero: Boolean = true;
def predecessor: Nat = throw new Error("negative number");
def successor: Nat = new Succ(Zero);
def + (that: Nat): Nat = that;
def - (that: Nat): Nat = if (that.isZero) Zero

else throw new Error("negative number")
}

The implementation of the predecessor and subtraction functions on Zero throws
an Error exception, which aborts the program with the given error message.

Here is the implementation of the successor class:

class Succ(x: Nat) extends Nat {
def isZero: Boolean = false;
def predecessor: Nat = x;
def successor: Nat = new Succ(this);
def + (that: Nat): Nat = x + that.successor;
def - (that: Nat): Nat = x - that.predecessor;

}

Note the implementation of method successor. To create the successor of a num-
ber, we need to pass the object itself as an argument to the Succ constructor. The
object itself is referenced by the reserved name this.

The implementations of + and - each contain a recursive call with the constructor
argument as receiver. The recursion will terminate once the receiver is the Zero

object (which is guaranteed to happen eventually because of the way numbers are
formed).

Exercise 5.0.3 Write an implementation Integer of integer numbers The imple-
mentation should support all operations of class Nat while adding two methods

def isPositive: Boolean
def negate: Integer

48 Classes and Objects

The first method should return true if the number is positive. The second method
should negate the number. Do not use any of Scala’s standard numeric classes in
your implementation. (Hint: There are two possible ways to implement Integer.
One can either make use the existing implementation of Nat, representing an inte-
ger as a natural number and a sign. Or one can generalize the given implementation
of Nat to Integer, using the three subclasses Zero for 0, Succ for positive numbers
and Pred for negative numbers.)

Language Elements Introduced In This Chapter

Types:

Type = ... | ident

Types can now be arbitrary identifiers which represent classes.

Expressions:

Expr = ... | Expr ’.’ ident | ’new’ Expr | ’this’

An expression can now be an object creation, or a selection E.m of a member m from
an object-valued expression E, or it can be the reserved name this.

Definitions and Declarations:

Def = FunDef | ValDef | ClassDef | TraitDef | ObjectDef
ClassDef = [’abstract’] ’class’ ident [’(’ [Parameters] ’)’]

[’extends’ Expr] [‘{’ {TemplateDef} ‘}’]
TraitDef = ’trait’ ident [’extends’ Expr] [’{’ {TemplateDef} ’}’]
ObjectDef = ’object’ ident [’extends’ Expr] [’{’ {ObjectDef} ’}’]
TemplateDef = [Modifier] (Def | Dcl)
ObjectDef = [Modifier] Def
Modifier = ’private’ | ’override’
Dcl = FunDcl | ValDcl
FunDcl = ’def’ ident {’(’ [Parameters] ’)’} ’:’ Type
ValDcl = ’val’ ident ’:’ Type

A definition can now be a class, trait or object definition such as

class C(params) extends B { defs }
trait T extends B { defs }
object O extends B { defs }

The definitions defs in a class, trait or object may be preceded by modifiers private
or override.

Abstract classes and traits may also contain declarations. These introduce deferred
functions or values with their types, but do not give an implementation. Deferred
members have to be implemented in subclasses before objects of an abstract class

49

or trait can be created.

Chapter 6

Case Classes and Pattern Match-
ing

Say, we want to write an interpreter for arithmetic expressions. To keep things sim-
ple initially, we restrict ourselves to just numbers and + operations. Such expres-
sions can be represented as a class hierarchy, with an abstract base class Expr as the
root, and two subclasses Number and Sum. Then, an expression 1 + (3 + 7) would
be represented as

new Sum(new Number(1), new Sum(new Number(3), new Number(7)))

Now, an evaluator of an expression like this needs to know of what form it is (either
Sum or Number) and also needs to access the components of the expression. The
following implementation provides all necessary methods.

trait Expr {
def isNumber: boolean;
def isSum: boolean;
def numValue: int;
def leftOp: Expr;
def rightOp: Expr;

}
class Number(n: int) extends Expr {
def isNumber: boolean = true;
def isSum: boolean = false;
def numValue: int = n;
def leftOp: Expr = throw new Error("Number.leftOp");
def rightOp: Expr = throw new Error("Number.rightOp");

}
class Sum(e1: Expr, e2: Expr) extends Expr {
def isNumber: boolean = false;
def isSum: boolean = true;

52 Case Classes and Pattern Matching

def numValue: int = throw new Error("Sum.numValue");
def leftOp: Expr = e1;
def rightOp: Expr = e2;

}

With these classification and access methods, writing an evaluator function is sim-
ple:

def eval(e: Expr): int = {
if (e.isNumber) e.numValue
else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
else throw new Error("unrecognized expression kind")

}

However, defining all these methods in classes Sum and Number is rather tedious.
Furthermore, the problem becomes worse when we want to add new forms of ex-
pressions. For instance, consider adding a new expression form Prod for products.
Not only do we have to implement a new class Prod, with all previous classification
and access methods; we also have to introduce a new abstract method isProduct in
class Expr and implement that method in subclasses Number, Sum, and Prod. Having
to modify existing code when a system grows is always problematic, since it intro-
duces versioning and maintenance problems.

The promise of object-oriented programming is that such modifications should be
unnecessary, because they can be avoided by re-using existing, unmodified code
through inheritance. Indeed, a more object-oriented decomposition of our prob-
lem solves the problem. The idea is to make the “high-level” operation eval a
method of each expression class, instead of implementing it as a function outside
the expression class hierarchy, as we have done before. Because eval is now a mem-
ber of all expression nodes, all classification and access methods become superflu-
ous, and the implementation is simplified considerably:

trait Expr {
def eval: int;

}
class Number(n: int) extends Expr {
def eval: int = n;

}
class Sum(e1: Expr, e2: Expr) extends Expr {
def eval: int = e1.eval + e2.eval;

}

Furthermore, adding a new Prod class does not entail any changes to existing code:

class Prod(e1: Expr, e2: Expr) extends Expr {
def eval: int = e1.eval * e2.eval;

}

53

The conclusion we can draw from this example is that object-oriented decomposi-
tion is the technique of choice for constructing systems that should be extensible
with new types of data. But there is also another possible way we might want to ex-
tend the expression example. We might want to add new operations on expressions.
For instance, we might want to add an operation that pretty-prints an expression
tree to standard output.

If we have defined all classification and access methods, such an operation can eas-
ily be written as an external function. Here is an implementation:

def print(e: Expr): unit =
if (e.isNumber) System.out.print(e.numValue)
else if (e.isSum) {
System.out.print("(");
print(e.leftOp);
System.out.print("+");
print(e.rightOp);
System.out.print(")");

} else throw new Error("unrecognized expression kind");

However, if we had opted for an object-oriented decomposition of expressions, we
would need to add a new print method to each class:

trait Expr {
def eval: int;
def print: unit;

}
class Number(n: int) extends Expr {
def eval: int = n;
def print: unit = System.out.print(n);

}
class Sum(e1: Expr, e2: Expr) extends Expr {
def eval: int = e1.eval + e2.eval;
def print: unit = {
System.out.print("(");
print(e1);
System.out.print("+");
print(e2);
System.out.print(")");

}

Hence, classical object-oriented decomposition requires modification of all existing
classes when a system is extended with new operations.

As yet another way we might want to extend the interpreter, consider expression
simplification. For instance, we might want to write a function which rewrites ex-
pressions of the form a * b + a * c to a * (b + c). This operation requires in-

54 Case Classes and Pattern Matching

spection of more than a single node of the expression tree at the same time. Hence,
it cannot be implemented by a method in each expression kind, unless that method
can also inspect other nodes. So we are forced to have classification and access
methods in this case. This seems to bring us back to square one, with all the prob-
lems of verbosity and extensibility.

Taking a closer look, one observers that the only purpose of the classification and
access functions is to reverse the data construction process. They let us determine,
first, which sub-class of an abstract base class was used and, second, what were the
constructor arguments. Since this situation is quite common, Scala has a way to
automate it with case classes.

6.1 Case Classes and Case Objects

Case classes and case objects are defined like a normal classes or objects, except that
the definition is prefixed with the modifier case. For instance, the definitions

trait Expr;
case class Number(n: int) extends Expr;
case class Sum(e1: Expr, e2: Expr) extends Expr;

introduce Number and Sum as case classes. The case modifier in front of a class or
object definition has the following effects.

1. Case classes implicitly come with a constructor function, with the same name
as the class. In our example, the two functions

def Number(n: int) = new Number(n);
def Sum(e1: Expr, e2: Expr) = new Sum(e1, e2);

would be added. Hence, one can now construct expression trees a bit more
concisely, as in

Sum(Sum(Number(1), Number(2)), Number(3))

2. Case classes and case objects implicitly come with implementations of meth-
ods toString, equals and hashCode, which override the methods with the
same name in class AnyRef. The implementation of these methods takes
in each case the structure of a member of a case class into account. The
toString method represents an expression tree the way it was constructed.
So,

Sum(Sum(Number(1), Number(2)), Number(3))

would be converted to exactly that string, whereas the default implementa-
tion in class AnyRef would return a string consisting of the outermost con-

6.2 Pattern Matching 55

structor name Sum and a number. The equals methods treats two case mem-
bers of a case class as equal if they have been constructed with the same con-
structor and with arguments which are themselves pairwise equal. This also
affects the implementation of == and !=, which are implemented in terms of
equals in Scala. So,

Sum(Number(1), Number(2)) == Sum(Number(1), Number(2))

will yield true. If Sum or Number were not case classes, the same expression
would be false, since the standard implementation of equals in class AnyRef
always treats objects created by different constructor calls as being differ-
ent. The hashCode method follows the same principle as other two meth-
ods. It computes a hash code from the case class constructor name and the
hash codes of the constructor arguments, instead of from the object’s address,
which is what the as the default implementation of hashCode does.

3. Case classes implicitly come with nullary accessor methods which retrieve
the constructor arguments. In our example, Number would obtain an acces-
sor method

def n: int

which returns the constructor parameter n, whereas Sum would obtain two
accessor methods

def e1: Expr, e2: Expr;

Hence, if for a value s of type Sum, say, one can now write s.e1, to access the
left operand. However, for a value e of type Expr, the term e.e1 would be
illegal since e1 is defined in Sum; it is not a member of the base class Expr. So,
how do we determine the constructor and access constructor arguments for
values whose static type is the base class Expr? This is solved by the fourth
and final particularity of case classes.

4. Case classes allow the constructions of patterns which refer to the case class
constructor.

6.2 Pattern Matching

Pattern matching is a generalization of C or Java’s switch statement to class hier-
archies. Instead of a switch statement, there is a standard method match, which is
defined in Scala’s root class Any, and therefore is available for all objects. The match

method takes as argument a number of cases. For instance, here is an implementa-
tion of eval using pattern matching.

def eval(e: Expr): int = e match {

56 Case Classes and Pattern Matching

case Number(x) => x
case Sum(l, r) => eval(l) + eval(r)

}

In this example, there are two cases. Each case associates a pattern with an expres-
sion. Patterns are matched against the selector values e. The first pattern in our
example, Number(n), matches all values of the form Number(v), where v is an arbi-
trary value. In that case, the pattern variable n is bound to the value v. Similarly, the
pattern Sum(l, r) matches all selector values of form Sum(v1, v2) and binds the
pattern variables l and r to v1 and v2, respectively.

In general, patterns are built from

• Case class constructors, e.g. Number, Sum, whose arguments are again patterns,

• pattern variables, e.g. n, e1, e2,

• the “wildcard” pattern _,

• literals, e.g. 1, true, "abc",

• constant identifiers, e.g. MAXINT, EmptySet.

Pattern variables always start with a lower-case letter, so that they can be distin-
guished from constant identifiers, which start with an upper case letter. Each vari-
able name may occur only once in a pattern. For instance, Sum(x, x) would be
illegal as a pattern, since the pattern variable x occurs twice in it.

Meaning of Pattern Matching. A pattern matching expression

e.match { case p1 => e1 ... case pn => en }

matches the patterns p1, . . . , pn in the order they are written against the selector
value e.

• A constructor pattern C (p1, . . . , pn) matches all values that are of type C (or a
subtype thereof) and that have been constructed with C-arguments matching
patterns p1, . . . , pn .

• A variable pattern x matches any value and binds the variable name to that
value.

• The wildcard pattern ‘_’ matches any value but does not bind a name to that
value.

• A constant pattern C matches a value which is equal (in terms of ==) to C.

The pattern matching expression rewrites to the right-hand-side of the first case
whose pattern matches the selector value. References to pattern variables are re-
placed by corresponding constructor arguments. If none of the patterns matches,
the pattern matching expression is aborted with a MatchError exception.

6.2 Pattern Matching 57

Example 6.2.1 Our substitution model of program evaluation extends quite natu-
rally to pattern matching, For instance, here is how eval applied to a simple expres-
sion is re-written:

eval(Sum(Number(1), Number(2)))

-> (by rewriting the application)

Sum(Number(1), Number(2)) match {
case Number(n) => n
case Sum(e1, e2) => eval(e1) + eval(e2)

}

-> (by rewriting the pattern match)

eval(Number(1)) + eval(Number(2))

-> (by rewriting the first application)

Number(1) match {
case Number(n) => n
case Sum(e1, e2) => eval(e1) + eval(e2)

} + eval(Number(2))

-> (by rewriting the pattern match)

1 + eval(Number(2))

->∗ 1 + 2 -> 3

Pattern Matching and Methods. In the previous example, we have used pattern
matching in a function which was defined outside the class hierarchy over which it
matches. Of course, it is also possible to define a pattern matching function in that
class hierarchy itself. For instance, we could have defined eval is a method of the
base class Expr, and still have used pattern matching in its implementation:

trait Expr {
def eval: int = this match {
case Number(n) => n
case Sum(e1, e2) => e1.eval + e2.eval

}
}

Exercise 6.2.2 Consider the following definitions representing trees of integers.
These definitions can be seen as an alternative representation of IntSet:

58 Case Classes and Pattern Matching

trait IntTree;
case object EmptyTree extends IntTree;
case class Node(elem: int, left: IntTree, right: IntTree) extends IntTree;

Complete the following implementations of function contains and insert for
IntTree’s.

def contains(t: IntTree, v: int): boolean = t match { ...
...

}
def insert(t: IntTree, v: int): IntTree = t match { ...
...

}

Pattern Matching Anonymous Functions. So far, case-expressions always ap-
peared in conjunction with a match operation. But it is also possible to use case-
expressions by themselves. A block of case-expressions such as

{ case P1 => E1 ... case Pn => En }

is seen by itself as a function which matches its arguments against the patterns
P1, . . . , Pn , and produces the result of one of E1, . . . , En . (If no pattern matches, the
function would throw a MatchError exception instead). In other words, the expres-
sion above is seen as a shorthand for the anonymous function

(x => x match { case P1 => E1 ... case Pn => En })

where x is a fresh variable which is not used otherwise in the expression.

Chapter 7

Generic Types and Methods

Classes in Scala can have type parameters. We demonstrate the use of type parame-
ters with functional stacks as an example. Say, we want to write a data type of stacks
of integers, with methods push, top, pop, and isEmpty. This is achieved by the fol-
lowing class hierarchy:

trait IntStack {
def push(x: int): IntStack = new IntNonEmptyStack(x, this);
def isEmpty: boolean
def top: int;
def pop: IntStack;

}
class IntEmptyStack extends IntStack {
def isEmpty = true;
def top = throw new Error("EmptyStack.top");
def pop = throw new Error("EmptyStack.pop");

}
class IntNonEmptyStack(elem: int, rest: IntStack) {
def isEmpty = false;
def top = elem;
def pop = rest;

}

Of course, it would also make sense to define an abstraction for a stack of Strings.
To do that, one could take the existing abstraction for IntStack, rename it to
StringStack and at the same time rename all occurrences of type int to String.

A better way, which does not entail code duplication, is to parameterize the stack
definitions with the element type. Parameterization lets us generalize from a spe-
cific instance of a problem to a more general one. So far, we have used parameteri-
zation only for values, but it is available also for types. To arrive at a generic version
of Stack, we equip it with a type parameter.

60 Generic Types and Methods

trait Stack[a] {
def push(x: a): Stack[a] = new NonEmptyStack[a](x, this);
def isEmpty: boolean
def top: a;
def pop: Stack[a];

}
class EmptyStack[a] extends Stack[a] {
def isEmpty = true;
def top = throw new Error("EmptyStack.top");
def pop = throw new Error("EmptyStack.pop");

}
class NonEmptyStack[a](elem: a, rest: Stack[a]) extends Stack[a] {
def isEmpty = false;
def top = elem;
def pop = rest;

}

In the definitions above, ‘a’ is a type parameter of class Stack and its subclasses.
Type parameters are arbitrary names; they are enclosed in brackets instead of
parentheses, so that they can be easily distinguished from value parameters. Here
is an example how the generic classes are used:

val x = new EmptyStack[int];
val y = x.push(1).push(2);
System.out.println(y.pop.top);

The first line creates a new empty stack of int’s. Note the actual type argument
[int] which replaces the formal type parameter a.

It is also possible to parameterize methods with types. As an example, here is a
generic method which determines whether one stack is a prefix of another.

def isPrefix[a](p: Stack[a], s: Stack[a]): boolean = {
p.isEmpty ||
p.top == s.top && isPrefix[a](p.pop, s.pop);

}

parameters are called polymorphic. Generic methods are also called polymorphic.
The term comes from the Greek, where it means “having many forms”. To apply a
polymorphic method such as isPrefix, we pass type parameters as well as value
parameters to it. For instance,

val s1 = new EmptyStack[String].push("abc");
val s2 = new EmptyStack[String].push("abx").push(s.pop)
System.out.println(isPrefix[String](s1, s2));

7.1 Type Parameter Bounds 61

Local Type Inference. Passing type parameters such as [int] or [String] all the
time can become tedious in applications where generic functions are used a lot.
Quite often, the information in a type parameter is redundant, because the correct
parameter type can also be determined by inspecting the function’s value parame-
ters or expected result type. Taking the expression isPrefix[String](s1, s2) as an
example, we know that its value parameters are both of type Stack[String], so we
can deduce that the type parameter must be String. Scala has a fairly powerful type
inferencer which allows one to omit type parameters to polymorphic functions and
constructors in situations like these. In the example above, one could have writ-
ten isPrefix(s1, s2) and the missing type argument [String] would have been
inserted by the type inferencer.

7.1 Type Parameter Bounds

Now that we know how to make classes generic it is natural to generalize some of
the earlier classes we have written. For instance class IntSet could be generalized to
sets with arbitrary element types. Let’s try. The trait for generic sets is easily written.

trait Set[a] {
def incl(x: a): Set[a];
def contains(x: a): boolean;

}

However, if we still want to implement sets as binary search trees, we encounter a
problem. The contains and incl methods both compare elements using methods
< and >. For IntSet this was OK, since type int has these two methods. But for
an arbitrary type parameter a, we cannot guarantee this. Therefore, the previous
implementation of, say, contains would generate a compiler error.

def contains(x: int): boolean =
if (x < elem) left contains x

^ < not a member of type a.

One way to solve the problem is to restrict the legal types that can be substituted for
type a to only those types that contain methods < and > of the correct types. There is
a trait Ord[a] in the standard class library Scala which represents values which are
comparable (via < and >) to values of type a. We can enforce the comparability of a
type by demanding that the type is a subtype of Ord. This is done by giving an upper
bound to the type parameter of Set:

trait Set[a <: Ord[a]] {
def incl(x: a): Set[a];
def contains(x: a): boolean;

}

62 Generic Types and Methods

The parameter declaration a <: Ord[a] introduces a as a type parameter which
must be a subtype of Ord[a], i.e. its values must be comparable to values of the
same type.

With this restriction, we can now implement the rest of the generic set abstraction
as we did in the case of IntSets before.

class EmptySet[a <: Ord[a]] extends Set[a] {
def contains(x: a): boolean = false;
def incl(x: a): Set[a] = new NonEmptySet(x, new EmptySet[a], new EmptySet[a]);

}

class NonEmptySet[a <: Ord[a]]
(elem:a, left: Set[a], right: Set[a]) extends Set[a] {

def contains(x: a): boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true;

def incl(x: a): Set[a] =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this;

}

Note that we have left out the type argument in the object creations
new NonEmptySet(...). In the same way as for polymorphic methods, missing type
arguments in constructor calls are inferred from value arguments and/or the ex-
pected result type.

Here is an example that uses the generic set abstraction.

val s = new EmptySet[double].incl(1.0).incl(2.0);
s.contains(1.5)

This is OK, as type double implements trait Ord[double]. However, the following
example is in error.

val s = new EmptySet[java.io.File]
^ java.io.File does not conform to type

parameter bound Ord[java.io.File].

To conclude the discussion of type parameter bounds, here is the definition of trait
Ord in scala.

package scala;
trait Ord[t <: Ord[t]]: t {
def < (that: t): Boolean;
def <=(that: t): Boolean = this < that || this == that;

7.2 Variance Annotations 63

def > (that: t): Boolean = that < this;
def >=(that: t): Boolean = that <= this;

}

7.2 Variance Annotations

The combination of type parameters and subtyping poses some interesting ques-
tions. For instance, should Stack[String] be a subtype of Stack[AnyRef]? Intu-
itively, this seems OK, since a stack of Strings is a special case of a stack of AnyRefs.
More generally, if T is a subtype of type S then Stack[T] should be a subtype of
Stack[S]. This property is called co-variant subtyping.

In Scala, generic types have by default non-variant subtyping. That is, with Stack

defined as above, stacks with different element types would never be in a subtype
relation. However, we can enforce co-variant subtyping of stacks by changing the
first line of the definition of class Stack as follows.

class Stack[+a] {

Prefixing a formal type parameter with a + indicates that subtyping is covariant in
that parameter. Besides +, there is also a prefix - which indicates contra-variant
subtyping. If Stack was defined class Stack[-a] ..., then T a subtype of type S

would imply that Stack[S] is a subtype of Stack[T] (which in the case of stacks
would be rather surprising!).

In a purely functional world, all types could be co-variant. However, the situation
changes once we introduce mutable data. Consider the case of arrays in Java or
.NET. Such arrays are represented in Scala by a generic class Array. Here is a partial
definition of this class.

class Array[a] {
def apply(index: int): a
def update(index: int, elem: a): unit;

}

The class above defines the way Scala arrays are seen from Scala user programs. The
Scala compiler will map this abstraction to the underlying arrays of the host system
in most cases where this possible.

In Java, arrays are indeed covariant; that is, for reference types T and S, if T is a sub-
type of S, then also Array[T] is a subtype of Array[S]. This might seem natural but
leads to safety problems that require special runtime checks. Here is an example:

val x = new Array[String](1);
val y: Array[Any] = x;
y(0) = new Rational(1, 2); // this is syntactic sugar for

64 Generic Types and Methods

// y.update(0, new Rational(1, 2));

In the first line, a new array of strings is created. In the second line, this array is
bound to a variable y, of type Array[Any]. Assuming arrays are covariant, this is OK,
since Array[String] is a subtype of Array[Any]. Finally, in the last line a rational
number is stored in the array. This is also OK, since type Rational is a subtype of
the element type Any of the array y. We thus end up storing a rational number in an
array of strings, which clearly violates type soundness.

Java solves this problem by introducing a run-time check in the third line which
tests whether the stored element is compatible with the element type with which
the array was created. We have seen in the example that this element type is not
necessarily the static element type of the array being updated. If the test fails, an
ArrayStoreException is raised.

Scala solves this problem instead statically, by disallowing the second line at
compile-time, because arrays in Scala have non-variant subtyping. This raises the
question how a Scala compiler verifies that variance annotations are correct. If we
had simply declared arrays co-variant, how would the potential problem have been
detected?

Scala uses a conservative approximation to verify soundness of variance annota-
tions. A covariant type parameter of a class may only appear in co-variant posi-
tions inside the class. Among the co-variant positions are the types of values in the
class, the result types of methods in the class, and type arguments to other covariant
types. Not co-variant are types of formal method parameters. Hence, the following
class definition would have been rejected

class Array[+a] {
def apply(index: int): a;
def update(index: int, elem: a): unit;

^ covariant type parameter a
appears in contravariant position.

}

So far, so good. Intuitively, the compiler was correct in rejecting the update method
in a co-variant class because update potentially changes state, and therefore under-
mines the soundness of co-variant subtyping.

However, there are also methods which do not mutate state, but where a type pa-
rameter still appears contra-variantly. An example is push in type Stack. Again the
Scala compiler will reject the definition of this method for co-variant stacks.

class Stack[+a] {
def push(x: a): Stack[a] =

^ covariant type parameter a
appears in contravariant position.

7.3 Lower Bounds 65

This is a pity, because, unlike arrays, stacks are purely functional data structures and
therefore should enable co-variant subtyping. However, there is a a way to solve the
problem by using a polymorphic method with a lower type parameter bound.

7.3 Lower Bounds

We have seen upper bounds for type parameters. In a type parameter declaration
such as t <: U, the type parameter t is restricted to range only over subtypes of type
U. Symmetrical to this are lower bounds in Scala. In a type parameter declaration
t >: L, the type parameter t is restricted to range only over supertypes of type L.
(One can also combine lower and upper bounds, as in t >: L <: U.)

Using lower bounds, we can generalize the push method in Stack as follows.

class Stack[+a] {
def push[b >: a](x: b): Stack[b] = new NonEmptyStack(x, this);

Technically, this solves our variance problem since now the type parameter a ap-
pears no longer as a parameter type of method push. Instead, it appears as lower
bound for another type parameter of a method, which is classified as a co-variant
position. Hence, the Scala compiler accepts the new definition of push.

In fact, we have not only solved the technical variance problem but also have gen-
eralized the definition of push. Before, we were required to push only elements with
types that conform to the declared element type of the stack. Now, we can push also
elements of a supertype of this type, but the type of the returned stack will change
accordingly. For instance, we can now push an AnyRef onto a stack of Strings, but
the resulting stack will be a stack of AnyRefs instead of a stack of Strings!

In summary, one should not hesitate to add variance annotations to your data struc-
tures, as this yields rich natural subtyping relationships. The compiler will detect
potential soundness problems. Even if the compiler’s approximation is too conser-
vative, as in the case of method push of class Stack, this will often suggest a useful
generalization of the contested method.

7.4 Least Types

Scala does not allow one to parameterize objects with types. That’s why we orig-
inally defined a generic class EmptyStack[a], even though a single value denoting
empty stacks of arbitrary type would do. For co-variant stacks, however, one can
use the following idiom:

object EmptyStack extends Stack[All] { ... }

66 Generic Types and Methods

The identifier All refers to the bottom type scala.All, which is a subtype of all
other types. Hence, for co-variant stacks, Stack[All] is a subtype of Stack[T], for
any other type T. This makes it possible to use a single empty stack object in user
code. For instance:

val s = EmptyStack.push("abc").push(new AnyRef());

Let’s analyze the type assignment for this expression in detail. The EmptyStack ob-
ject is of type Stack[All], which has a method

push[b >: All](elem: b): Stack[b] .

Local type inference will determine that the type parameter b should be instanti-
ated to String in the application EmptyStack.push("abc"). The result type of that
application is hence Stack[String], which in turn has a method

push[b >: String](elem: b): Stack[b] .

The final part of the value definition above is the application of this method to
new AnyRef(). Local type inference will determine that the type parameter b should
this time be instantiated to AnyRef, with result type Stack[AnyRef]. Hence, the type
assigned to value s is Stack[AnyRef].

Besides scala.All, which is a subtype of every other type, there is also the type
scala.AllRef, which is a subtype of scala.AnyRef, and every type derived from
it. The null literal in Scala is of that type. This makes null compatible with every
reference type, but not with a value type such as int.

We conclude this section with the complete improved definition of stacks. Stacks
have now co-variant subtyping, the push method has been generalized, and the
empty stack is represented by a single object.

trait Stack[+a] {
def push[b >: a](x: b): Stack[b] = new NonEmptyStack(x, this);
def isEmpty: boolean
def top: a;
def pop: Stack[a];

}
object EmptyStack extends Stack[All] {
def isEmpty = true;
def top = throw new Error("EmptyStack.top");
def pop = throw new Error("EmptyStack.pop");

}
class NonEmptyStack[{a](elem: a, rest: Stack[a]) extends Stack[a] {
def isEmpty = false;
def top = elem;
def pop = rest;

}

7.5 Tuples 67

Many classes in the Scala library are generic. We now present two commonly used
families of generic classes, tuples and functions. The discussion of another com-
mon class, lists, is deferred to the next chapter.

7.5 Tuples

Sometimes, a function needs to return more than one result. For instance, take the
function divmod which returns the integer quotient and rest of two given integer
arguments. Of course, one can define a class to hold the two results of divmod, as in:

case class TwoInts(first: int, second: int);
def divmod(x: int, y: int): TwoInts = new TwoInts(x / y, x % y)

However, having to define a new class for every possible pair of result types is very
tedious. In Scala one can use instead a the generic classes Tuplen, for each n be-
tween 2 and 9. As an example, here is the definition of Tuple2.

package scala;
case class Tuple2[a, b](_1: a, _2: b);

With Tuple2, the divmod method can be written as follows.

def divmod(x: int, y: int) = new Tuple2[int, int](x / y, x % y)

As usual, type parameters to constructors can be omitted if they are deducible from
value arguments. Also, Scala defines an alias Pair for Tuple2 (as well as Triple for
Tuple3). With these conventions, divmod can equivalently be written as follows.

def divmod(x: int, y: int) = Pair(x / y, x % y)

How are elements of tuples accessed? Since tuples are case classes, there are two
possibilities. One can either access a tuple’s fields using the names of the construc-
tor parameters _i , as in the following example:

val xy = divmod(x, y);
System.out.println("quotient: " + x._1 + ", rest: " + x._2);

Or one uses pattern matching on tuples, as in the following example:

divmod(x, y) match {
case Pair(n, d) =>
System.out.println("quotient: " + n + ", rest: " + d);

}

Note that type parameters are never used in patterns; it would have been illegal to
write case Pair[int, int](n, d).

68 Generic Types and Methods

7.6 Functions

Scala is a functional language in that functions are first-class values. Scala is also an
object-oriented language in that every value is an object. It follows that functions
are objects in Scala. For instance, a function from type String to type int is repre-
sented as an instance of the trait Function1[String, int]. The Function1 trait is
defined as follows.

package scala;
trait Function1[-a, +b] {
def apply(x: a): b

}

Besides Function1, there are also definitions of Function0 and Function2 up to
Function9 in the standard Scala library. That is, there is one definition for each
possible number of function parameters between 0 and 9. Scala’s function type
syntax T1, . . . , Tn => S is simply an abbreviation for the parameterized type
Functionn[T1, . . . , Tn ,S] .

Scala uses the same syntax f (x) for function application, no matter whether f is a
method or a function object. This is made possible by the following convention: A
function application f (x) where f is an object (as opposed to a method) is taken
to be a shorthand for f .apply(x). Hence, the apply method of a function type is
inserted automatically where this is necessary.

That’s also why we defined array subscripting in Section 7.2 by an apply method.
For any array a, the subscript operation a(i) is taken to be a shorthand for
a.apply(i).

Functions are an example where a contra-variant type parameter declaration is use-
ful. For example, consider the following code:

val f: (AnyRef => int) = x => x.hashCode();
val g: (String => int) = f
g("abc")

It’s sound to bind the value g of type String => int to f, which is of type
AnyRef => int. Indeed, all one can do with function of type String => int is pass
it a string in order to obtain an integer. Clearly, the same works for function f: If we
pass it a string (or any other object), we obtain an integer. This demonstrates that
function subtyping is contra-variant in its argument type whereas it is covariant in
its result type. In short, S ⇒ T is a subtype of S′ ⇒ T ′, provided S′ is a subtype of S
and T is a subtype of T ′.

Example 7.6.1 Consider the Scala code

val plus1: (int => int) = (x: int) => x + 1;
plus1(2)

7.6 Functions 69

This is expanded into the following object code.

val plus1: Function1[int, int] = new Function1[int, int] {
def apply(x: int): int = x + 1

}
plus1.apply(2)

Here, the object creation new Function1[int, int]{ ... } represents an instance
of an anonymous class. It combines the creation of a new Function1 object with an
implementation of the applymethod (which is abstract in Function1). Equivalently,
but more verbosely, one could have used a local class:

val plus1: Function1[int, int] = {
class Local extends Function1[int, int] {
def apply(x: int): int = x + 1

}
new Local: Function1[int, int]

}
plus1.apply(2)

Chapter 8

Lists

Lists are an important data structure in many Scala programs. A list containing the
elements x1, . . . , xn is written List(x1, ..., xn). Examples are:

val fruit = List("apples", "oranges", "pears");
val nums = List(1, 2, 3, 4);
val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1));
val empty = List();

Lists are similar to arrays in languages such as C or Java, but there are also three
important differences. First, lists are immutable. That is, elements of a list cannot
be changed by assignment. Second, lists have a recursive structure, whereas arrays
are flat. Third, lists support a much richer set of operations than arrays usually do.

8.1 Using Lists

The List type. Like arrays, lists are homogeneous. That is, the elements of a list all
have the same type. The type of a list with elements of type T is written List[T]

(compare to T[] in Java).

val fruit: List[String] = List("apples", "oranges", "pears");
val nums : List[int] = List(1, 2, 3, 4);
val diag3: List[List[int]] = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1));
val empty: List[int] = List();

List constructors. All lists are built from two more fundamental constructors, Nil
and :: (pronounced “cons”). Nil represents an empty list. The infix operator ::

expresses list extension. That is, x :: xs represents a list whose first element is x,
which is followed by (the elements of) list xs. Hence, the list values above could also

72 Lists

have been defined as follows (in fact their previous definition is simply syntactic
sugar for the definitions below).

val fruit = "apples" :: ("oranges" :: ("pears" :: Nil));
val nums = 1 :: (2 :: (3 :: (4 :: Nil)));
val diag3 = (1 :: (0 :: (0 :: Nil))) ::

(0 :: (1 :: (0 :: Nil))) ::
(0 :: (0 :: (1 :: Nil))) :: Nil;

val empty = Nil;

The ‘::’ operation associates to the right: A :: B :: C is interpreted as
A :: (B :: C). Therefore, we can drop the parentheses in the definitions above.
For instance, we can write shorter

val nums = 1 :: 2 :: 3 :: 4 :: Nil;

Basic operations on lists. All operations on lists can be expressed in terms of the
following three:

head returns the first element of a list,
tail returns the list consisting of all elements except the

first element,
isEmpty returns true iff the list is empty

These operations are defined as methods of list objects. So we invoke them by se-
lecting from the list that’s operated on. Examples:

empty.isEmpty = true
fruit.isEmpty = false
fruit.head = "apples"
fruit.tail.head = "oranges"
diag3.head = List(1, 0, 0)

The head and tail methods are defined only for non-empty lists. When selected
from an empty list, they throw an exception.

As an example of how lists can be processed, consider sorting the elements of a list
of numbers into ascending order. One simple way to do so is insertion sort, which
works as follows: To sort a non-empty list with first element x and rest xs, sort the
remainder xs and insert the element x at the right position in the result. Sorting an
empty list will yield the empty list. Expressed as Scala code:

def isort(xs: List[int]): List[int] =
if (xs.isEmpty) Nil
else insert(xs.head, isort(xs.tail))

Exercise 8.1.1 Provide an implementation of the missing function insert.

8.2 Definition of class List I: First Order Methods 73

List patterns. In fact, :: is defined as a case class in Scala’s standard library.
Hence, it is possible to decompose lists by pattern matching, using patterns com-
posed from the Nil and :: constructors. For instance, isort can be written alterna-
tively as follows.

def isort(xs: List[int]): List[int] = xs match {
case List() => List()
case x :: xs1 => insert(x, isort(xs1))

}

where

def insert(x: int, xs: List[int]): List[int] = xs match {
case List() => List(x)
case y :: ys => if (x <= y) x :: xs else y :: insert(x, ys)

}

8.2 Definition of class List I: First Order Methods

Lists are not built in in Scala; they are defined by an abstract class List, which comes
with two subclasses for :: and Nil. In the following we present a tour through class
List.

package scala;
abstract class List[+a] {

List is an abstract class, so one cannot define elements by calling the empty List

constructor (e.g. by new List). The class has a type parameter a. It is co-variant
in this parameter, which means that List[S] <: List[T] for all types S and T such
that S <: T. The class is situated in the package scala. This is a package containing
the most important standard classes of Scala. List defines a number of methods,
which are explained in the following.

Decomposing lists. First, there are the three basic methods isEmpty, head, tail.
Their implementation in terms of pattern matching is straightforward:

def isEmpty: boolean = match {
case Nil => true
case x :: xs => false

}
def head: a = match {
case Nil => throw new Error("Nil.head")
case x :: xs => x

}

74 Lists

def tail: List[a] = match {
case Nil => throw new Error("Nil.tail")
case x :: xs => x

}

The next function computes the length of a list.

def length = match {
case Nil => 0
case x :: xs => 1 + xs.length

}

Exercise 8.2.1 Design a tail-recursive version of length.

The next two functions are the complements of head and tail.

def last: a;
def init: List[a];

xs.last returns the last element of list xs, whereas xs.init returns all elements of
xs except the last. Both functions have to traverse the entire list, and are thus less
efficient than their head and tail analogues. Here is the implementation of last.

def last: a = match {
case Nil => throw new Error("Nil.last")
case x :: Nil => x
case x :: xs => xs.last

}

The implementation of init is analogous.

The next three functions return a prefix of the list, or a suffix, or both.

def take(n: int): List[a] =
if (n == 0 || isEmpty) Nil else head :: tail.take(n-1);

def drop(n: int): List[a] =
if (n == 0 || isEmpty) this else tail.drop(n-1);

def split(n: int): Pair[List[a], List[a]] = Pair(take(n), drop(n))

(xs take n) returns the first n elements of list xs, or the whole list, if its length is
smaller than n. (xs drop n) returns all elements of xs except the n first ones. Fi-
nally, (xs split n) returns a pair consisting of the lists resulting from xs take n

and xs drop n.

The next function returns an element at a given index in a list. It is thus analogous
to array subscripting. Indices start at 0.

8.2 Definition of class List I: First Order Methods 75

def apply(n: int): a = drop(n).head;

The apply method has a special meaning in Scala. An object with an apply method
can be applied to arguments as if it was a function. For instance, to pick the 3’rd
element of a list xs, one can write either xs.apply(3) or xs(3) – the latter expression
expands into the first.

With take and drop, we can extract sublists consisting of consecutive elements of
the original list. To extract the sublist xsm , . . . , xsn−1 of a list xs, use:

xs.drop(m).take(n - m)

Zipping lists. The next function combines two lists into a list of pairs. Given two
lists

xs = List(x1, ..., xn) , and
ys = List(y1, ..., yn) ,

xs zip ys constructs the list List(Pair(x1, y1), ..., Pair(xn, yn)). If the two
lists have different lengths, the longer one of the two is truncated. Here is the defi-
nition of zip – note that it is a polymorphic method.

def zip[b](that: List[b]): List[Pair[a,b]] =
if (this.isEmpty || that.isEmpty) Nil
else Pair(this.head, that.head) :: (this.tail zip that.tail);

Consing lists.. Like any infix operator, :: is also implemented as a method of an
object. In this case, the object is the list that is extended. This is possible, because
operators ending with a ‘:’ character are treated specially in Scala. All such opera-
tors are treated as methods of their right operand. E.g.,

x :: y = y.::(x) whereas x + y = x.+(y)

Note, however, that operands of a binary operation are in each case evaluated from
left to right. So, if D and E are expressions with possible side-effects, D :: E is
translated to {val x = D; E.::(x)} in order to maintain the left-to-right order of
operand evaluation.

Another difference between operators ending in a ‘:’ and other operators concerns
their associativity. Operators ending in ‘:’ are right-associative, whereas other op-
erators are left-associative. E.g.,

x :: y :: z = x :: (y :: z) whereas x + y + z = (x + y) + z

The definition of :: as a method in class List is as follows:

76 Lists

def ::[b >: a](x: b): List[b] = new scala.::(x, this);

Note that :: is defined for all elements x of type B and lists of type List[A] such that
the type B of x is a supertype of the list’s element type A. The result is in this case a list
of B’s. This is expressed by the type parameter b with lower bound a in the signature
of ::.

Concatenating lists. An operation similar to :: is list concatenation, written ‘:::’.
The result of (xs ::: ys) is a list consisting of all elements of xs, followed by all
elements of ys. Because it ends in a colon, ::: is right-associative and is considered
as a method of its right-hand operand. Therefore,

xs ::: ys ::: zs = xs ::: (ys ::: zs)
= zs.:::(ys).:::(xs)

Here is the implementation of the ::: method:

def :::[b >: a](prefix: List[b]): List[b] = prefix match {
case Nil => this
case p :: ps => this.:::(ps).::(p)

}

Reversing lists. Another useful operation is list reversal. There is a method
reverse in List to that effect. Let’s try to give its implementation:

def reverse[a](xs: List[a]): List[a] = xs match {
case Nil => Nil
case x :: xs => reverse(xs) ::: List(x)

}

This implementation has the advantage of being simple, but it is not very efficient.
Indeed, one concatenation is executed for every element in the list. List concatena-
tion takes time proportional to the length of its first operand. Therefore, the com-
plexity of reverse(xs) is

n + (n −1)+ ...+1 = n(n +1)/2

where n is the length of xs. Can reverse be implemented more efficiently? We will
see later that there exists another implementation which has only linear complexity.

8.3 Example: Merge sort

The insertion sort presented earlier in this chapter is simple to formulate, but also
not very efficient. It’s average complexity is proportional to the square of the length

8.3 Example: Merge sort 77

of the input list. We now design a program to sort the elements of a list which is
more efficient than insertion sort. A good algorithm for this is merge sort, which
works as follows.

First, if the list has zero or one elements, it is already sorted, so one returns the
list unchanged. Longer lists are split into two sub-lists, each containing about half
the elements of the original list. Each sub-list is sorted by a recursive call to the sort
function, and the resulting two sorted lists are then combined in a merge operation.

For a general implementation of merge sort, we still have to specify the type of list
elements to be sorted, as well as the function to be used for the comparison of el-
ements. We obtain a function of maximal generality by passing these two items as
parameters. This leads to the following implementation.

def msort[a](less: (a, a) => boolean)(xs: List[a]): List[a] = {
def merge(xs1: List[a], xs2: List[a]): List[a] =
if (xs1.isEmpty) xs2
else if (xs2.isEmpty) xs1
else if (less(xs1.head, xs2.head)) xs1.head :: merge(xs1.tail, xs2)
else xs2.head :: merge(xs1, xs2.tail);

val n = xs.length/2;
if (n == 0) xs
else merge(msort(less)(xs take n), msort(less)(xs drop n))

}

The complexity of msort is O(N log (N)), where N is the length of the input list. To
see why, note that splitting a list in two and merging two sorted lists each take time
proportional to the length of the argument list(s). Each recursive call of msorthalves
the number of elements in its input, so there are O(log (N)) consecutive recursive
calls until the base case of lists of length 1 is reached. However, for longer lists each
call spawns off two further calls. Adding everything up we obtain that at each of
the O(log (N)) call levels, every element of the original lists takes part in one split
operation and in one merge operation. Hence, every call level has a total cost pro-
portional to O(N). Since there are O(log (N)) call levels, we obtain an overall cost
of O(N log (N)). That cost does not depend on the initial distribution of elements
in the list, so the worst case cost is the same as the average case cost. This makes
merge sort an attractive algorithm for sorting lists.

Here is an example how msort is used.

msort(x: int, y: int => x < y)(List(5, 7, 1, 3))

The definition of msort is curried, to make it easy to specialize it with particular
comparison functions. For instance,

val intSort = msort(x: int, y: int => x < y)
val reverseSort = msort(x: int, y: int => x > y)

78 Lists

8.4 Definition of class List II: Higher-Order Methods

The examples encountered so far show that functions over lists often have similar
structures. We can identify several patterns of computation over lists, like:

• transforming every element of a list in some way.

• extracting from a list all elements satisfying a criterion.

• combine the elements of a list using some operator.

Functional programming languages enable programmers to write general functions
which implement patterns like this by means of higher order functions. We now
discuss a set of commonly used higher-order functions, which are implemented as
methods in class List.

Mapping over lists. A common operation is to transform each element of a list
and then return the lists of results. For instance, to scale each element of a list by a
given factor.

def scaleList(xs: List[double], factor: double): List[double] = xs match {
case Nil => xs
case x :: xs1 => x * factor :: scaleList(xs1, factor)

}

This pattern can be generalized to the map method of class List:

abstract class List[a] { ...
def map[b](f: a => b): List[b] = this match {
case Nil => this
case x :: xs => f(x) :: xs.map(f)

}

Using map, scaleList can be more concisely written as follows.

def scaleList(xs: List[double], factor: double) =
xs map (x => x * factor)

As another example, consider the problem of returning a given column of a matrix
which is represented as a list of rows, where each row is again a list. This is done by
the following function column.

def column[a](xs: List[List[a[]], index: int): List[a] =
xs map (row => row at index)

Closely related to map is the foreach method, which applies a given function to all
elements of a list, but does not construct a list of results. The function is thus applied
only for its side effect. foreach is defined as follows.

8.4 Definition of class List II: Higher-Order Methods 79

def foreach(f: a => unit): unit = this match {
case Nil => ()
case x :: xs => f(x) ; xs.foreach(f)

}

This function can be used for printing all elements of a list, for instance:

xs foreach (x => System.out.println(x))

Exercise 8.4.1 Consider a function which squares all elements of a list and re-
turns a list with the results. Complete the following two equivalent definitions of
squareList.

def squareList(xs: List[int]): List[int] = xs match {
case List() => ??
case y :: ys => ??

}
def squareList(xs: List[int]): List[int] =
xs map ??

Filtering Lists. Another common operation selects from a list all elements fulfill-
ing a given criterion. For instance, to return a list of all positive elements in some
given lists of integers:

def posElems(xs: List[int]): List[int] = xs match {
case Nil => xs
case x :: xs1 => if (x > 0) x :: posElems(xs1) else posElems(xs1)

}

This pattern is generalized to the filter method of class List:

def filter(p: a => boolean): List[a] = this match {
case Nil => this
case x :: xs => if (p(x)) x :: xs.filter(p) else xs.filter(p)

}

Using filter, posElems can be more concisely written as follows.

def posElems(xs: List[int]): List[int] =
xs filter (x => x > 0)

An operation related to filtering is testing whether all elements of a list satisfy a cer-
tain condition. Dually, one might also be interested in the question whether there
exists an element in a list that satisfies a certain condition. These operations are
embodied in the higher-order functions forall and exists of class List.

80 Lists

def forall(p: a => Boolean): Boolean =
isEmpty || (p(head) && (tail forall p));

def exists(p: a => Boolean): Boolean =
!isEmpty && (p(head) || (tail exists p));

To illustrate the use of forall, consider the question whether a number if prime.
Remember that a number n is prime of it can be divided without remainder only
by one and itself. The most direct translation of this definition would test that n
divided by all numbers from 2 up to and excluding itself gives a non-zero remainder.
This list of numbers can be generated using a function List.range which is defined
in object List as follows.

package scala;
object List { ...
def range(from: int, end: int): List[int] =
if (from >= end) Nil else from :: range(from + 1, end);

For example, List.range(2, n) generates the list of all integers from 2 up to and
excluding n. The function isPrime can now simply be defined as follows.

def isPrime(n: int) =
List.range(2, n) forall (x => n % x != 0)

We see that the mathematical definition of prime-ness has been translated directly
into Scala code.

Exercise: Define forall and exists in terms of filter.

Folding and Reducing Lists. Another common operation is to combine the ele-
ments of a list with some operator. For instance:

sum(List(x1, ..., xn)) = 0 + x1 + ... + xn

product(List(x1, ..., xn)) = 1 * x1 * ... * xn

Of course, we can implement both functions with a recursive scheme:

def sum(xs: List[int]): int = xs match {
case Nil => 0
case y :: ys => y + sum(ys)

}
def product(xs: List[int]): int = xs match {
case Nil => 1
case y :: ys => y * product(ys)

}

But we can also use the generalization of this program scheme embodied in the
reduceLeft method of class List. This method inserts a given binary operator be-

8.4 Definition of class List II: Higher-Order Methods 81

tween adjacent elements of a given list. E.g.

List(x1, ..., xn).reduceLeft(op) = (...(x1 op x2) op ...) op xn

Using reduceLeft, we can make the common pattern in sum and product apparent:

def sum(xs: List[int]) = (0 :: xs) reduceLeft {(x, y) => x + y}
def product(xs: List[int]) = (1 :: xs) reduceLeft {(x, y) => x * y}

Here is the implementation of reduceLeft.

def reduceLeft(op: (a, a) => a): a = this match {
case Nil => throw new Error("Nil.reduceLeft")
case x :: xs => (xs foldLeft x)(op)

}
def foldLeft[b](z: b)(op: (b, a) => b): b = this match {
case Nil => z
case x :: xs => (xs foldLeft op(z, x))(op)

}
}

We see that the reduceLeft method is defined in terms of another generally use-
ful method, foldLeft. The latter takes as additional parameter an accumulator z,
which is returned when foldLeft is applied on an empty list. That is,

(List(x1, ..., xn) foldLeft z)(op) = (...(z op x1) op ...) op xn

The sum and product methods can be defined alternatively using foldLeft:

def sum(xs: List[int]) = (xs foldLeft 0) {(x, y) => x + y}
def product(xs: List[int]) = (xs foldLeft 1) {(x, y) => x * y}

FoldRight and ReduceRight. Applications of foldLeft and reduceLeft expand to
left-leaning trees. . They have duals foldRight and reduceRight, which produce
right-leaning trees.

List(x1, ..., xn).reduceRight(op) = x1 op (... (xn−1 op xn)...)
(List(x1, ..., xn) foldRight acc)(op) = x1 op (... (xn op acc)...)

These are defined as follows.

def reduceRight(op: (a, a) => a): a = match
case Nil => throw new Error("Nil.reduceRight")
case x :: Nil => x
case x :: xs => op(x, xs.reduceRight(op))

}
def foldRight[b](z: b)(op: (a, b) => b): b = match {

82 Lists

case Nil => z
case x :: xs => op(x, (xs foldRight z)(op))

}

Class List defines also two symbolic abbreviations for foldLeft and foldRight:

def /:[b](z: b)(f: (b, a) => b): b = foldLeft(z)(f);
def :\[b](z: b)(f: (a, b) => b): b = foldRight(z)(f);

The method names picture the left/right leaning trees of the fold operations by for-
ward or backward slashes. The : points in each case to the list argument whereas
the end of the slash points to the accumulator (or: zero) argument z. That is,

(z /: List(x1, ..., xn))(op) = (...(z op x1) op ...) op xn

(List(x1, ..., xn) :\ z)(op) = x1 op (... (xn op acc)...)

For associative and commutative operators, /: and :\ are equivalent (even though
there may be a difference in efficiency). But sometimes, only one of the two opera-
tors is appropriate or has the right type:

Exercise 8.4.2 Consider the problem of writing a function flatten, which takes a
list of element lists as arguments. The result of flatten should be the concatenation
of all element lists into a single list. Here is the an implementation of this method
in terms of :\.

def flatten[a](xs: List[List[a]]): List[a] =
(xs :\ Nil) {(x, xs) => x ::: xs}

In this case it is not possible to replace the application of :\ with /:. Explain why.

In fact flatten is predefined together with a set of other userful function in an ob-
ject called List in the standatd Scala library. It can be accessed from user program
by calling List.flatten. Note that flatten is not a method of class List – it would
not make sense there, since it applies only to lists of lists, not to all lists in general.

List Reversal Again. We have seen in Section 8.2 an implementation of method
reverse whose run-time was quadratic in the length of the list to be reversed. We
now develop a new implementation of reverse, which has linear cost. The idea is
to use a foldLeft operation based on the following program scheme.

class List[+a] { ...
def reverse: List[a] = (z? /: this)(op?)

It only remains to fill in the z? and op?parts. Let’s try to deduce them from examples.

Nil
= Nil.reverse // by specification

8.4 Definition of class List II: Higher-Order Methods 83

= (z /: Nil)(op) // by the template for reverse
= (Nil foldLeft z)(op) // by the definition of /:
= z // by definition of foldLeft

Hence, z? must be Nil. To deduce the second operand, let’s study reversal of a list
of length one.

List(x)
= List(x).reverse // by specification
= (Nil /: List(x))(op) // by the template for reverse, with z = Nil
= (List(x) foldLeft Nil)(op) // by the definition of /:
= op(Nil, x) // by definition of foldLeft

Hence, op(Nil, x) equals List(x), which is the same as x :: Nil. This suggests
to take as op the :: operator with its operands exchanged. Hence, we arrive at the
following implementation for reverse, which has linear complexity.

def reverse: List[a] =
((Nil: List[a]) /: this) {(xs, x) => x :: xs}

(Remark: The type annotation of Nil is necessary to make the type inferencer work.)

Exercise 8.4.3 Fill in the missing expressions to complete the following definitions
of some basic list-manipulation operations as fold operations.

def mapFun[a, b](xs: List[a], f: a => b): List[b] =
(xs :\ List[b]()){ ?? }

def lengthFun[a](xs: List[a]): int =
(0 /: xs){ ?? }

Nested Mappings. We can employ higher-order list processing functions to ex-
press many computations that are normally expressed as nested loops in imperative
languages.

As an example, consider the following problem: Given a positive integer n, find all
pairs of positive integers i and j , where 1 ≤ j < i < n such that i + j is prime. For
instance, if n = 7, the pairs are

i 2 3 4 4 5 6 6
j 1 2 1 3 2 1 5

i + j 3 5 5 7 7 7 11

A natural way to solve this problem consists of two steps. In a first step, one gener-
ates the sequence of all pairs (i , j) of integers such that 1 ≤ j < i < n. In a second
step one then filters from this sequence all pairs (i , j) such that i + j is prime.

84 Lists

Looking at the first step in more detail, a natural way to generate the sequence of
pairs consists of three sub-steps. First, generate all integers between 1 and n for i .

Second, for each integer i between 1 and n, generate the list of pairs (i ,1) up to
(i , i −1). This can be achieved by a combination of range and map:

List.range(1, i) map (x => Pair(i, x))

Finally, combine all sublists using foldRight with :::. Putting everything together
gives the following expression:

List.range(1, n)
.map(i => List.range(1, i).map(x => Pair(i, x)))
.foldRight(List[Pair[int, int]]()) {(xs, ys) => xs ::: ys}
.filter(pair => isPrime(pair._1 + pair._2))

Flattening Maps. The combination of mapping and then concatenating sublists
resulting from the map is so common that we there is a special method for it in class
List:

abstract class List[+a] { ...
def flatMap[b](f: a => List[b]): List[b] = match {
case Nil => Nil
case x :: xs => f(x) ::: (xs flatMap f)

}
}

With flatMap, the pairs-whose-sum-is-prime expression could have been written
more concisely as follows.

List.range(1, n)
.flatMap(i => List.range(1, i).map(x => Pair(i, x)))
.filter(pair => isPrime(pair._1 + pair._2))

8.5 Summary

This chapter has ingtroduced lists as a fundamental data structure in programming.
Since lists are immutable, they are a common data type in functional programming
languages. They play there a role comparable to arrays in imperative languages.
However, the access patterns between arrays and lists are quite different. Where ar-
ray accessing is always done by indexing, this is much less common for lists. We
have seen that scala.List defines a method called apply for indexing; however
this operation is much more costly than in the case of arrays (linear as opposed
to constant time). Instead of indexing, lists are usually traversed recursively, where

8.5 Summary 85

recursion steps are usually based on a pattern match over the traversed list. There
is also a rich set of higher-order combinators which allow one to instantiate a set of
predefined patterns of computations over lists.

Chapter 9

For-Comprehensions

The last chapter demonstrated that higher-order functions such as map, flatMap,
filter provide powerful constructions for dealing with lists. But sometimes the
level of abstraction required by these functions makes a program hard to under-
stand.

To help understandability, Scala has a special notation which simplifies common
patterns of applications of higher-order functions. This notation builds a bridge
between set-comprehensions in mathematics and for-loops in imperative lan-
guages such as C or Java. It also closely resembles the query notation of relational
databases.

As a first example, say we are given a list persons of persons with name and age fields.
To print the names of all persons in the sequence which are aged over 20, one can
write:

for (val p <- persons; p.age > 20) yield p.name

This is equivalent to the following expression , which uses higher-order functions
filter and map:

persons filter (p => p.age > 20) map (p => p.name)

The for-comprehension looks a bit like a for-loop in imperative languages, except
that it constructs a list of the results of all iterations.

Generally, a for-comprehension is of the form

for (s) yield e

Here, s is a sequence of generators and filters. A generator is of the form val x <- e,
where e is a list-valued expression. It binds x to successive values in the list. A filter is
an expression f of type boolean. It omits from consideration all bindings for which
f is false. The sequence s starts in each case with a generator. If there are several

88 For-Comprehensions

generators in a sequence, later generators vary more rapidly than earlier ones.

Here are two examples that show how for-comprehensions are used. First, let’s redo
an example of the previous chapter: Given a positive integer n, find all pairs of
positive integers i and j , where 1 ≤ j < i < n such that i + j is prime. With a for-
comprehension this problem is solved as follows:

for (val i <- List.range(1, n);
val j <- List.range(1, i);
isPrime(i+j)) yield Pair(i, j)

This is arguably much clearer than the solution using map, flatMap and filter that
we have developed previously.

As a second example, consider computing the scalar product of two vectors xs and
ys. Using a for-comprehension, this can be written as follows.

sum (for(val (x, y) <- xs zip ys) yield x * y)

9.1 The N-Queens Problem

For-comprehensions are especially useful for solving combinatorial puzzles. An ex-
ample of such a puzzle is the 8-queens problem: Given a standard chess-board,
place 8 queens such that no queen is in check from any other (a queen can check
another piece if they are on the same column, row, or diagonal). We will now de-
velop a solution to this problem, generalizing it to chess-boards of arbitrary size.
Hence, the problem is to place n queens on a chess-board of size n ×n.

To solve this problem, note that we need to place a queen in each row. So we could
place queens in successive rows, each time checking that a newly placed queen is
not in check from any other queens that have already been placed. In the course of
this search, it might arrive that a queen to be placed in row k would be in check in
all fields of that row from queens in row 1 to k − 1. In that case, we need to abort
that part of the search in order to continue with a different configuration of queens
in columns 1 to k −1.

This suggests a recursive algorithm. Assume that we have already generated all so-
lutions of placing k − 1 queens on a board of size n × n. We can represent each
such solution by a list of length k −1 of column numbers (which can range from 1
to n). We treat these partial solution lists as stacks, where the column number of
the queen in row k −1 comes first in the list, followed by the column number of the
queen in row k −2, etc. The bottom of the stack is the column number of the queen
placed in the first row of the board. All solutions together are then represented as a
list of lists, with one element for each solution.

Now, to place the k’the queen, we generate all possible extensions of each previous
solution by one more queen. This yields another list of solution lists, this time of

9.2 Querying with For-Comprehensions 89

length k. We continue the process until we have reached solutions of the size of the
chess-board n. This algorithmic idea is embodied in function placeQueens below:

def queens(n: int): List[List[int]] = {
def placeQueens(k: int): List[List[int]] =
if (k == 0) List(List())
else for (val queens <- placeQueens(k - 1);

val column <- List.range(1, n + 1);
isSafe(column, queens, 1)) yield col :: queens;

placeQueens(n);
}

Exercise 9.1.1 Write the function

def isSafe(col: int, queens: List[int], delta: int): boolean

which tests whether a queen in the given column col is safe with respect to the
queens already placed. Here, delta is the difference between the row of the queen
to be placed and the row of the first queen in the list.

9.2 Querying with For-Comprehensions

The for-notation is essentially equivalent to common operations of database query
languages. For instance, say we are given a database books, represented as a list of
books, where Book is defined as follows.

case class Book(title: String, authors: List[String]);

Here is a small example database:

val books: List[Book] = List(
Book("Structure and Interpretation of Computer Programs",

List("Abelson, Harold", "Sussman, Gerald J.")),
Book("Principles of Compiler Design",

List("Aho, Alfred", "Ullman, Jeffrey")),
Book("Programming in Modula-2",

List("Wirth, Niklaus")),
Book("Introduction to Functional Programming"),

List("Bird, Richard")),
Book("The Java Language Specification",

List("Gosling, James", "Joy, Bill", "Steele, Guy", "Bracha, Gilad")));

Then, to find the titles of all books whose author’s last name is “Ullman”:

for (val b <- books; val a <- b.authors; a startsWith "Ullman")
yield b.title

90 For-Comprehensions

(Here, startsWith is a method in java.lang.String). Or, to find the titles of all
books that have the string “Program” in their title:

for (val b <- books; (b.title indexOf "Program") >= 0)
yield b.title

Or, to find the names of all authors that have written at least two books in the
database.

for (val b1 <- books; val b2 <- books; b1 != b2;
val a1 <- b1.authors; val a2 <- b2.authors; a1 == a2)

yield a1

The last solution is not yet perfect, because authors will appear several times in the
list of results. We still need to remove duplicate authors from result lists. This can
be achieved with the following function.

def removeDuplicates[a](xs: List[a]): List[a] =
if (xs.isEmpty) xs
else xs.head :: removeDuplicates(xs.tail filter (x => x != xs.head));

Note that the last expression in method removeDuplicates can be equivalently ex-
pressed using a for-comprehension.

xs.head :: removeDuplicates(for (val x <- xs.tail; x != xs.head) yield x)

9.3 Translation of For-Comprehensions

Every for-comprehension can be expressed in terms of the three higher-order func-
tions map, flatMap and filter. Here is the translation scheme, which is also used
by the Scala compiler.

• A simple for-comprehension

for (val x <- e) yield e’

is translated to

e.map(x => e’)

• A for-comprehension

for (val x <- e; f; s) yield e’

where f is a filter and s is a (possibly empty) sequence of generators or filters
is translated to

9.3 Translation of For-Comprehensions 91

for (val x <- e.filter(x => f); s) yield e’

and then translation continues with the latter expression.

• A for-comprehension

for (val x <- e; y <- e’; s) yield e’’

where s is a (possibly empty) sequence of generators or filters is translated to

e.flatMap(x => for (y <- e’; s) yield e’’)

and then translation continues with the latter expression.

For instance, taking our "pairs of integers whose sum is prime" example:

for (val i <- range(1, n);
val j <- range(1, i);
isPrime(i+j)

) yield (i, j)

Here is what we get when we translate this expression:

range(1, n)
.flatMap(i =>
range(1, i)
.filter(j => isPrime(i+j))
.map(j => (i, j)))

Conversely, it would also be possible to express functions map, flatMap and filter

using for-comprehensions. Here are the three functions again, this time imple-
mented using for-comprehensions.

object Demo {
def map[a, b](xs: List[a], f: a => b): List[b] =
for (val x <- cs) yield f(x);

def flatMap[a, b](xs: List[a], f: a => List[b]): List[b] =
for (val x <- xs; val y <- f(x)) yield y;

def filter[a](xs: List[a], p: a => boolean): List[a] =
for (val x <- xs; p(x)) yield x;

}

Not surprisingly, the translation of the for-comprehension in the body of Demo.map
will produce a call to map in class List. Similarly, Demo.flatMap and Demo.filter

translate to flatMap and filter in class List.

Exercise 9.3.1 Define the following function in terms of for.

92 For-Comprehensions

def flatten(xss: List[List[a]]): List[a] =
(xss :\ List()) ((xs, ys) => xs ::: ys)

Exercise 9.3.2 Translate

for (val b <- books; val a <- b.authors; a startsWith "Bird") yield b.title
for (val b <- books; (b.title indexOf "Program") >= 0) yield b.title

to higher-order functions.

9.4 For-Loops

For-comprehensions resemble for-loops in imperative languages, except that they
produce a list of results. Sometimes, a list of results is not needed but we would
still like the flexibility of generators and filters in iterations over lists. This is made
possible by a variant of the for-comprehension syntax, which expresses for-loops:

for (s) e

This construct is the same as the standard for-comprehension syntax except that
the keyword yield is missing. The for-loop is executed by executing the expression
e for each element generated from the sequence of generators and filters s.

As an example, the following expression prints out all elements of a matrix repre-
sented as a list of lists:

for (xs <- xss) {
for (x <- xs) System.out.print(x + "\t")
System.out.println()

}

The translation of for-loops to higher-order methods of class List is similar to
the translation of for-comprehensions, but is simpler. Where for-comprehensions
translate to map and flatMap, for-loops translate in each case to foreach.

9.5 Generalizing For

We have seen that the translation of for-comprehensions only relies on the presence
of methods map, flatMap, and filter. Therefore it is possible to apply the same
notation to generators that produce objects other than lists; these objects only have
to support the three key functions map, flatMap, and filter.

The standard Scala library has several other abstractions that support these three
methods and with them support for-comprehensions. We will encounter some of

9.5 Generalizing For 93

them in the following chapters. As a programmer you can also use this principle to
enable for-comprehensions for types you define – these types just need to support
methods map, flatMap, and filter.

There are many examples where this is useful: Examples are database interfaces,
XML trees, or optional values. We will see in Chapter 13.2 how for-comprehensions
can be used in the definition of parsers for context-free grammars that construct
abstract syntax trees.

One caveat: It is not assured automatically that the result translating a for-
comprehension is well-typed. To ensure this, the types of map, flatMap and filter

have to be essentially similar to the types of these methods in class List.

To make this precise, assume you have a parameterized class C[a] for which you
want to enable for-comprehensions. Then C should define map, flatMap and filter

with the following types:

def map[b](f: a => b): C[b]
def flatMap[b](f: a => C[b]): C[b]
def filter(p: a => boolean): C[a]

It would be attractive to enforce these types statically in the Scala compiler, for
instance by requiring that any type supporting for-comprehensions implements a
standard trait with these methods 1. The problem is that such a standard trait would
have to abstract over the identity of the class C, for instance by taking C as a type pa-
rameter. Note that this parameter would be a type constructor, which gets applied
to several different types in the signatures of methods map and flatMap. Unfortu-
nately, the Scala type system is too weak to express this construct, since it can han-
dle only type parameters which are fully applied types.

1In the programming language Haskell, which has similar constructs, this abstraction is called a
“monad with zero”

Chapter 10

Mutable State

Most programs we have presented so for did not have side-effects 1. Therefore, the
notion of time did not matter. For a program that terminates, any sequence of ac-
tions would have led to the same result! This is also reflected by the substitution
model of computation, where a rewrite step can be applied anywhere in a term,
and all rewritings that terminate lead to the same solution. In fact, this confluence
property is a deep result in λ-calculus, the theory underlying functional program-
ming.

In this chapter, we introduce functions with side effects and study their behavior.
We will see that as a consequence we have to fundamentally modify up the substi-
tution model of computation which we employed so far.

10.1 Stateful Objects

We normally view the world as a set of objects, some of which have state that
changes over time. Normally, state is associated with a set of variables that can be
changed in the course of a computation. There is also a more abstract notion of
state, which does not refer to particular constructs of a programming language: An
object has state (or: is stateful) if its behavior is influenced by its history.

For instance, a bank account object has state, because the question “can I withdraw
100 CHF?” might have different answers during the lifetime of the account.

In Scala, all mutable state is ultimately built from variables. A variable definition is
written like a value definition, but starts with var instead of val. For instance, the
following two definitions introduce and initialize two variables x and count.

var x: String = "abc";

1We ignore here the fact that some of our program printed to standard output, which technically
is a side effect.

96 Mutable State

var count = 111;

Like a value definition, a variable definition associates a name with a value. But in
the case of a variable definition, this association may be changed later by an assign-
ment. Such assignments are written as in C or Java. Examples:

x = "hello";
count = count + 1;

In Scala, every defined variable has to be initialized at the point of its definition.
For instance, the statement var x: int; is not regarded as a variable definition,
because the initializer is missing2. If one does not know, or does not care about, the
appropriate initializer, one can use a wildcard instead. I.e.

val x: T = _;

will initialize x to some default value (null for reference types, false for booleans,
and the appropriate version of 0 for numeric value types).

Real-world objects with state are represented in Scala by objects that have variables
as members. For instance, here is a class that represents bank accounts.

class BankAccount {
private var balance = 0;
def deposit(amount: int): unit =
if (amount > 0) balance = balance + amount;

def withdraw(amount: int): int =
if (0 < amount && amount <= balance) {
balance = balance - amount;
balance

} else throw new Error("insufficient funds");
}

The class defines a variable balance which contains the current balance of an ac-
count. Methods deposit and withdraw change the value of this variable through
assignments. Note that balance is private in class BankAccount – hence it can not
be accessed directly outside the class.

To create bank-accounts, we use the usual object creation notation:

val myAccount = new BankAccount

Example 10.1.1 Here is a scalaint session that deals with bank accounts.

2If a statement like this appears in a class, it is instead regarded as a variable declaration, which
introduces abstract access methods for the variable, but does not associate these methods with a
piece of state.

10.1 Stateful Objects 97

> :l bankaccount.scala
loading file ’bankaccount.scala’
> val account = new BankAccount
val account : BankAccount = BankAccount$class@1797795
> account deposit 50
(): scala.Unit
> account withdraw 20
30: scala.Int
> account withdraw 20
10: scala.Int
> account withdraw 15
java.lang.RuntimeException: insufficient funds

at BankAccount$class.withdraw(bankaccount.scala:13)
at <top-level>(console:1)

>

The example shows that applying the same operation (withdraw 20) twice to an
account yields different results. So, clearly, accounts are stateful objects.

Sameness and Change. Assignments pose new problems in deciding when two
expressions are “the same”. If assignments are excluded, and one writes

val x = E; val y = E;

where E is some arbitrary expression, then x and y can reasonably be assumed to be
the same. I.e. one could have equivalently written

val x = E; val y = x;

(This property is usually called referential transparency). But once we admit assign-
ments, the two definition sequences are different. Consider:

val x = new BankAccount; val y = new BankAccount;

To answer the question whether x and y are the same, we need to be more pre-
cise what “sameness” means. This meaning is captured in the notion of operational
equivalence, which, somewhat informally, is stated as follows.

Suppose we have two definitions of x and y. To test whether x and y define the same
value, proceed as follows.

• Execute the definitions followed by an arbitrary sequence S of operations that
involve x and y. Observe the results (if any).

• Then, execute the definitions with another sequence S’ which results from S

by renaming all occurrences of y in S to x.

• If the results of running S’ are different, then surely x and y are different.

98 Mutable State

• On the other hand, if all possible pairs of sequences (S, S’) yield the same
results, then x and y are the same.

In other words, operational equivalence regards two definitions x and y as defining
the same value, if no possible experiment can distinguish between x and y. An ex-
periment in this context are two version of an arbitrary program which use either x
or y.

Given this definition, let’s test whether

val x = new BankAccount; val y = new BankAccount;

defines values x and y which are the same. Here are the definitions again, followed
by a test sequence:

> val x = new BankAccount
> val y = new BankAccount
> x deposit 30
30
> y withdraw 20
java.lang.RuntimeException: insufficient funds

Now, rename all occurrences of y in that sequence to x. We get:

> val x = new BankAccount
> val y = new BankAccount
> x deposit 30
30
> x withdraw 20
10

Since the final results are different, we have established that x and y are not the
same. On the other hand, if we define

val x = new BankAccount; val y = x

then no sequence of operations can distinguish between x and y, so x and y are the
same in this case.

Assignment and the Substitution Model. These examples show that our previous
substitution model of computation cannot be used anymore. After all, under this
model we could always replace a value name by its defining expression. For instance
in

val x = new BankAccount; val y = x

the x in the definition of y could be replaced by new BankAccount. But we have seen
that this change leads to a different program. So the substitution model must be

10.2 Imperative Control Structures 99

invalid, once we add assignments.

10.2 Imperative Control Structures

Scala has the while and do-while loop constructs known from the C and Java lan-
guages. There is also a single branch if which leaves out the else-part as well as a
return statement which aborts a function prematurely. This makes it possible to
program in a conventional imperative style. For instance, the following function,
which computes the n’th power of a given parameter x, is implemented using while
and single-branch if.

def power (x: double, n: int): double = {
var r = 1.0;
var i = n;
while (i > 0) {
if ((i & 1) == 1) { r = r * x }
if (i > 1) r = r * r;
i = i >> 1;

}
r

}

These imperative control constructs are in the language for convenience. They
could have been left out, as the same constructs can be implemented using just
functions. As an example, let’s develop a functional implementation of the while
loop. whileLoop should be a function that takes two parameters: a condition, of
type boolean, and a command, of type unit. Both condition and command need
to be passed by-name, so that they are evaluated repeatedly for each loop iteration.
This leads to the following definition of whileLoop.

def whileLoop(def condition: boolean)(def command: unit): unit =
if (condition) {
command; whileLoop(condition)(command)

} else {}

Note that whileLoop is tail recursive, so it operates in constant stack space.

Exercise 10.2.1 Write a function repeatLoop, which should be applied as follows:

repeatLoop { command } (condition)

Is there also a way to obtain a loop syntax like the following?

repeatLoop { command } until (condition)

100 Mutable State

Some other control constructs known from C and Java are missing in Scala: There
are no break and continue jumps for loops. There are also no for-loops in the Java
sense – these have been replaced by the more general for-loop construct discussed
in Section 9.4.

10.3 Extended Example: Discrete Event Simulation

We now discuss an example that demonstrates how assignments and higher-order
functions can be combined in interesting ways. We will build a simulator for digital
circuits.

The example is taken from Abelson and Sussman’s book [ASS96]. We augment
their basic (Scheme-) code by an object-oriented structure which allows code-reuse
through inheritance. The example also shows how discrete event simulation pro-
grams in general are structured and built.

We start with a little language to describe digital circuits. A digital circuit is built
from wires and function boxes. Wires carry signals which are transformed by func-
tion boxes. We will represent signals by the booleans true and false.

Basic function boxes (or: gates) are:

• An inverter, which negates its signal

• An and-gate, which sets its output to the conjunction of its input.

• An or-gate, which sets its output to the disjunction of its input.

Other function boxes can be built by combining basic ones.

Gates have delays, so an output of a gate will change only some time after its inputs
change.

A Language for Digital Circuits. We describe the elements of a digital circuit by
the following set of Scala classes and functions.

First, there is a class Wire for wires. We can construct wires as follows.

val a = new Wire;
val b = new Wire;
val c = new Wire;

Second, there are functions

def inverter(input: Wire, output: Wire): unit
def andGate(a1: Wire, a2: Wire, output: Wire): unit
def orGate(o1: Wire, o2: Wire, output: Wire): unit

10.3 Extended Example: Discrete Event Simulation 101

which “make” the basic gates we need (as side-effects). More complicated function
boxes can now be built from these. For instance, to construct a half-adder, we can
define:

def halfAdder(a: Wire, b: Wire, s: Wire, c: Wire): unit = {
val d = new Wire;
val e = new Wire;
orGate(a, b, d);
andGate(a, b, c);
inverter(c, e);
andGate(d, e, s);

}

This abstraction can itself be used, for instance in defining a full adder:

def fullAdder(a: Wire, b: Wire, cin: Wire, sum: Wire, cout: Wire) = {
val s = new Wire;
val c1 = new Wire;
val c2 = new Wire;
halfAdder(a, cin, s, c1);
halfAdder(b, s, sum, c2);
orGate(c1, c2, cout);

}

Class Wire and functions inverter, andGate, and orGate represent thus a little lan-
guage in which users can define digital circuits. We now give implementations of
this class and these functions, which allow one to simulate circuits. These imple-
mentations are based on a simple and general API for discrete event simulation.

The Simulation API. Discrete event simulation performs user-defined actions at
specified times. An action is represented as a function which takes no parameters
and returns a unit result:

type Action = () => unit;

The time is simulated; it is not the actual “wall-clock” time.

A concrete simulation will be done inside an object which inherits from the abstract
Simulation class. This class has the following signature:

abstract class Simulation {
def currentTime: int;
def afterDelay(delay: int, def action: Action): unit;
def run: unit;

}

102 Mutable State

Here, currentTime returns the current simulated time as an integer number,
afterDelay schedules an action to be performed at a specified delay after
currentTime, and run runs the simulation until there are no further actions to be
performed.

The Wire Class. A wire needs to support three basic actions.

getSignal: boolean returns the current signal on the wire.

setSignal(sig: boolean): unit sets the wire’s signal to sig.

addAction(p: Action): unit attaches the specified procedure p to the ac-
tions of the wire. All attached action procedures will be executed every time
the signal of a wire changes.

Here is an implementation of the Wire class:

class Wire {
private var sigVal = false;
private var actions: List[Action] = List();
def getSignal = sigVal;
def setSignal(s: boolean) =
if (s != sigVal) {
sigVal = s;
actions.foreach(action => action());

}
def addAction(a: Action) = {
actions = a :: actions; a()

}
}

Two private variables make up the state of a wire. The variable sigVal represents the
current signal, and the variable actions represents the action procedures currently
attached to the wire.

The Inverter Class. We implement an inverter by installing an action on its input
wire, namely the action which puts the negated input signal onto the output sig-
nal. The action needs to take effect at InverterDelay simulated time units after the
input changes. This suggests the following implementation:

def inverter(input: Wire, output: Wire) = {
def invertAction() = {
val inputSig = input.getSignal;
afterDelay(InverterDelay, () => output.setSignal(!inputSig))

}
input addAction invertAction

}

10.3 Extended Example: Discrete Event Simulation 103

The And-Gate Class. And-gates are implemented analogously to inverters. The
action of an andGate is to output the conjunction of its input signals. This should
happen at AndGateDelay simulated time units after any one of its two inputs
changes. Hence, the following implementation:

def andGate(a1: Wire, a2: Wire, output: Wire) = {
def andAction() = {
val a1Sig = a1.getSignal;
val a2Sig = a2.getSignal;
afterDelay(AndGateDelay, () => output.setSignal(a1Sig & a2Sig));

}
a1 addAction andAction;
a2 addAction andAction;

}

Exercise 10.3.1 Write the implementation of orGate.

Exercise 10.3.2 Another way is to define an or-gate by a combination of inverters
and and gates. Define a function orGate in terms of andGate and inverter. What is
the delay time of this function?

The Simulation Class. Now, we just need to implement class Simulation, and we
are done. The idea is that we maintain inside a Simulation object an agenda of
actions to perform. The agenda is represented as a list of pairs of actions and the
times they need to be run. The agenda list is sorted, so that earlier actions come
before later ones.

class Simulation {
private type Agenda = List[Pair[int, Action]];
private var agenda: Agenda = List();

There is also a private variable curtime to keep track of the current simulated time.

private var curtime = 0;

An application of the method afterDelay(delay, action) inserts the pair
(curtime + delay, action) into the agenda list at the appropriate place.

def afterDelay(int delay)(def action: Action): unit = {
val actiontime = curtime + delay;
def insertAction(ag: Agenda): Agenda = ag match {
case List() =>
Pair(actiontime, action) :: ag

case (first @ Pair(time, act)) :: ag1 =>
if (actiontime < time) Pair(actiontime, action) :: ag
else first :: insert(ag1)

104 Mutable State

}
agenda = insert(agenda)

}

An application of the runmethod removes successive elements from the agenda and
performs their actions. It continues until the agenda is empty:

def run = {
afterDelay(0, () => System.out.println("*** simulation started ***"));
agenda match {
case List() =>
case Pair(_, action) :: agenda1 =>
agenda = agenda1; action(); run

}
}

Running the Simulator. To run the simulator, we still need a way to inspect
changes of signals on wires. To this purpose, we write a function probe.

def probe(name: String, wire: Wire): unit = {
wire addAction (() =>
System.out.println(
name + " " + currentTime + " new_value = " + wire.getSignal);

)
}

Now, to see the simulator in action, let’s define four wires, and place probes on two
of them:

> val input1 = new Wire
> val input2 = new Wire
> val sum = new Wire
> val carry = new Wire

> probe("sum", sum)
sum 0 new_value = false
> probe("carry", carry)
carry 0 new_value = false

Now let’s define a half-adder connecting the wires:

> halfAdder(input1, input2, sum, carry);

Finally, set one after another the signals on the two input wires to true and run the
simulation.

10.4 Summary 105

> input1 setSignal true; run

*** simulation started ***
sum 8 new_value = true
> input2 setSignal true; run
carry 11 new_value = true
sum 15 new_value = false

10.4 Summary

We have seen in this chapter the constructs that let us model state in Scala – these
are variables, assignments, and imperative control structures. State and Assign-
ment complicate our mental model of computation. In particular, referential trans-
parency is lost. On the other hand, assignment gives us new ways to formulate pro-
grams elegantly. As always, it depends on the situation whether purely functional
programming or programming with assignments works best.

Chapter 11

Computing with Streams

The previous chapters have introduced variables, assignment and stateful objects.
We have seen how real-world objects that change with time can be modeled by
changing the state of variables in a computation. Time changes in the real world
thus are modeled by time changes in program execution. Of course, such time
changes are usually stretched out or compressed, but their relative order is the
same. This seems quite natural, but there is a also price to pay: Our simple and pow-
erful substitution model for functional computation is no longer applicable once we
introduce variables and assignment.

Is there another way? Can we model state change in the real world using only im-
mutable functions? Taking mathematics as a guide, the answer is clearly yes: A
time-changing quantity is simply modeled by a function f(t) with a time parame-
ter t. The same can be done in computation. Instead of overwriting a variable with
successive values, we represent all these values as successive elements in a list. So,
a mutable variable var x: T gets replaced by an immutable value val x: List[T].
In a sense, we trade space for time – the different values of the variable now all exit
concurrently as different elements of the list. One advantage of the list-based view
is that we can “time-travel”, i.e. view several successive values of the variable at the
same time. Another advantage is that we can make use of the powerful library of list
processing functions, which often simplifies computation. For instance, consider
the imperative way to compute the sum of all prime numbers in an interval:

def sumPrimes(start: int, end: int): int = {
var i = start;
var acc = 0;
while (i < end) {
if (isPrime(i)) acc = acc + i;
i = i + 1;

}
acc

}

108 Computing with Streams

Note that the variable i “steps through” all values of the interval [start .. end-1].

A more functional way is to represent the list of values of variable i directly as
range(start, end). Then the function can be rewritten as follows.

def sumPrimes(start: int, end: int) =
sum(range(start, end) filter isPrime);

No contest which program is shorter and clearer! However, the functional program
is also considerably less efficient since it constructs a list of all numbers in the in-
terval, and then another one for the prime numbers. Even worse from an efficiency
point of view is the following example:

To find the second prime number between 1000 and 10000:

range(1000, 10000) filter isPrime at 1

Here, the list of all numbers between 1000 and 10000 is constructed. But most of
that list is never inspected!

However, we can obtain efficient execution for examples like these by a trick:

Avoid computing the tail of a sequence unless that tail is actually neces-
sary for the computation.

We define a new class for such sequences, which is called Stream.

Streams are created using the constant empty and the constructor cons, which are
both defined in module scala.Stream. For instance, the following expression con-
structs a stream with elements 1 and 2:

Stream.cons(1, Stream.cons(2, Stream.empty))

As another example, here is the analogue of List.range, but returning a stream
instead of a list:

def range(start: Int, end: Int): Stream[Int] =
if (start >= end) Stream.empty
else Stream.cons(start, range(start + 1, end));

(This function is also defined as given above in module Stream). Even though
Stream.range and List.range look similar, their execution behavior is completely
different:

Stream.range immediately returns with a Stream object whose first element is
start. All other elements are computed only when they are demanded by calling
the tail method (which might be never at all).

Streams are accessed just as lists. as for lists, the basic access methods are isEmpty,
head and tail. For instance, we can print all elements of a stream as follows.

109

def print(xs: Stream[a]): unit =
if (!xs.isEmpty) { System.out.println(xs.head); print(xs.tail) }

Streams also support almost all other methods defined on lists (see below for where
their methods sets differ). For instance, we can find the second prime number be-
tween 1000 and 10000 by applying methods filter and apply on an interval stream:

Stream.range(1000, 10000) filter isPrime at 1

The difference to the previous list-based implementation is that now we do not
needlessly construct and test for primality any numbers beyond 3.

Consing and appending streams. Two methods in class List which are not sup-
ported by class Stream are :: and :::. The reason is that these methods are dis-
patched on their right-hand side argument, which means that this argument needs
to be evaluated before the method is called. For instance, in the case of x :: xs

on lists, the tail xs needs to be evaluated before :: can be called and the new list
can be constructed. This does not work for streams, where we require that the tail
of a stream should not be evaluated until it is demanded by a tail operation. The
argument why list-append ::: cannot be adapted to streams is analogous.

Instead of x :: xs, one uses Stream.cons(x, xs) for constructing a stream with
first element x and (unevaluated) rest xs. Instead of xs ::: ys, one uses the opera-
tion xs append ys.

Chapter 12

Iterators

Iterators are the imperative version of streams. Like streams, iterators describe po-
tentially infinite lists. However, there is no data-structure which contains the el-
ements of an iterator. Instead, iterators allow one to step through the sequence,
using two abstract methods next and hasNext.

trait Iterator[+a] {
def hasNext: boolean;
def next: a;

Method next returns successive elements. Method hasNext indicates whether there
are still more elements to be returned by next. Iterators also support some other
methods, which are explained later.

As an example, here is an application which prints the squares of all numbers from
1 to 100.

var it: Iterator[int] = Iterator.range(1, 100);
while (it.hasNext) {
val x = it.next;
System.out.println(x * x)

}

12.1 Iterator Methods

Iterators support a rich set of methods besides next and hasNext, which is described
in the following. Many of these methods mimic a corresponding functionality in
lists.

112 Iterators

Append. Method append constructs an iterator which resumes with the given iter-
ator it after the current iterator has finished.

def append[b >: a](that: Iterator[b]): Iterator[b] = new Iterator[b] {
def hasNext = Iterator.this.hasNext || that.hasNext;
def next = if (Iterator.this.hasNext) Iterator.this.next else that.next;

}

The terms Iterator.this.next and Iterator.this.hasNext in the definition of
append call the corresponding methods as they are defined in the enclosing
Iterator class. If the Iterator prefix to this would have been missing, hasNext
and next would have called recursively the methods being defined in the result of
append, which is not what we want.

Map, FlatMap, Foreach. Method map constructs an iterator which returns all ele-
ments of the original iterator transformed by a given function f.

def map[b](f: a => b): Iterator[b] = new Iterator[b] {
def hasNext = Iterator.this.hasNext;
def next = f(Iterator.this.next)

}

Method flatMap is like method map, except that the transformation function f now
returns an iterator. The result of flatMap is the iterator resulting from appending
together all iterators returned from successive calls of f.

def flatMap[b](f: a => Iterator[b]): Iterator[b] = new Iterator[b] {
private var cur: Iterator[b] = Iterator.empty;
def hasNext: Boolean =
if (cur.hasNext) true
else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); hasNext }
else false;

def next: b =
if (cur.hasNext) cur.next
else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); next }
else throw new Error("next on empty iterator");

}

Closely related to map is the foreach method, which applies a given function to all
elements of an iterator, but does not construct a list of results

def foreach(f: a => Unit): Unit =
while (hasNext) { f(next) }

12.1 Iterator Methods 113

Filter. Method filter constructs an iterator which returns all elements of the
original iterator that satisfy a criterion p.

def filter(p: a => Boolean) = new BufferedIterator[a] {
private val source =
Iterator.this.buffered;

private def skip: Unit =
while (source.hasNext && !p(source.head)) { source.next; () }

def hasNext: Boolean =
{ skip; source.hasNext }

def next: a =
{ skip; source.next }

def head: a =
{ skip; source.head; }

}

In fact, filter returns instances of a subclass of iterators which are “buffered”. A
BufferedIterator object is an iterator which has in addition a method head. This
method returns the element which would otherwise have been returned by head,
but does not advance beyond that element. Hence, the element returned by head

is returned again by the next call to head or next. Here is the definition of the
BufferedIterator trait.

trait BufferedIterator[+a] extends Iterator[a] {
def head: a

}

Since map, flatMap, filter, and foreach exist for iterators, it follows that for-
comprehensions and for-loops can also be used on iterators. For instance, the ap-
plication which prints the squares of numbers between 1 and 100 could have equiv-
alently been expressed as follows.

for (val i <- Iterator.range(1, 100))
System.out.println(i * i);

Zip. Method zip takes another iterator and returns an iterator consisting of pairs
of corresponding elements returned by the two iterators.

def zip[b](that: Iterator[b]) = new Iterator[Pair[a, b]] {
def hasNext = Iterator.this.hasNext && that.hasNext;
def next = Pair(Iterator.this.next, that.next);

}
}

114 Iterators

12.2 Constructing Iterators

Concrete iterators need to provide implementations for the two abstract methods
next and hasNext in class Iterator. The simplest iterator is Iterator.empty which
always returns an empty sequence:

object Iterator {
object empty extends Iterator[All] {
def hasNext = false;
def next: a = throw new Error("next on empty iterator");

}

A more interesting iterator enumerates all elements of an array. This iterator is con-
structed by the fromArray method, which is also defined in the object Iterator

def fromArray[a](xs: Array[a]) = new Iterator[a] {
private var i = 0;
def hasNext: Boolean =
i < xs.length;

def next: a =
if (i < xs.length) { val x = xs(i) ; i = i + 1 ; x }
else throw new Error("next on empty iterator");

}

Another iterator enumerates an integer interval. The Iterator.range function re-
turns an iterator which traverses a given interval of integer values. It is defined as
follows.

object Iterator {
def range(start: int, end: int) = new Iterator[int] {
private var current = start;
def hasNext = current < end;
def next = {
val r = current;
if (current < end) current = current + 1
else throw new Error("end of iterator");
r

}
}

}

All iterators seen so far terminate eventually. It is also possible to define iterators
that go on forever. For instance, the following iterator returns successive integers
from some start value1.

1Due to the finite representation of type int, numbers will wrap around at 231.

12.3 Using Iterators 115

def from(start: int) = new Iterator[int] {
private var last = start - 1;
def hasNext = true;
def next = { last = last + 1; last }

}

12.3 Using Iterators

Here are two more examples how iterators are used. First, to print all elements of an
array xs: Array[int], one can write:

Iterator.fromArray(xs) foreach (x =>
System.out.println(x))

Or, using a for-comprehension:

for (val x <- Iterator.fromArray(xs))
System.out.println(x)

As a second example, consider the problem of finding the indices of all the elements
in an array of doubles greater than some limit. The indices should be returned as
an iterator. This is achieved by the following expression.

import Iterator._;
fromArray(xs)
.zip(from(0))
.filter(case Pair(x, i) => x > limit)
.map(case Pair(x, i) => i)

Or, using a for-comprehension:

import Iterator._;
for (val Pair(x, i) <- fromArray(xs) zip from(0); x > limit)
yield i

Chapter 13

Combinator Parsing

In this chapter we describe how to write combinator parsers in Scala. Such parsers
are constructed from predefined higher-order functions, so called parser combina-
tors, that closely model the constructions of an EBNF grammar [Wir77].

As running example, we consider parsers for possibly nested lists of identifiers and
numbers, which are described by the following context-free grammar.

letter ::= /* all letters */
digit ::= /* all digits */

ident ::= letter {letter | digit }
number ::= digit {digit}

list ::= ‘(’ [listElems] ‘)’
listElems ::= expr [‘,’ listElems]
expr ::= ident | number | list

13.1 Simple Combinator Parsing

In this section we will only be concerned with the task of recognizing input strings,
not with processing them. So we can describe parsers by the sets of input strings
they accept. There are two fundamental operators over parsers: &&& expresses the
sequential composition of a parser with another, while ||| expresses an alternative.
These operations will both be defined as methods of a Parser class. We will also
define constructors for the following primitive parsers:

118 Combinator Parsing

empty The parser that accepts the empty string
fail The parser that accepts no string
chr(c: char) The parser that accepts the single-character string “c”.
chr(p: char => boolean) The parser that accepts single-character strings “c”

for which p(c) is true.

There are also the two higher-order parser combinators opt, expressing optionality
and rep, expressing repetition. For any parser p, opt(p) yields a parser that accepts
the strings accepted by p or else the empty string, while rep(p) accepts arbitrary
sequences of the strings accepted by p. In EBNF, opt(p) corresponds to [p] and
rep(p) corresponds to {p}.

The central idea of parser combinators is that parsers can be produced by a straight-
forward rewrite of the grammar, replacing ::= with =, sequencing with &&&, choice
| with |||, repetition {...} with rep(...) and optional occurrence [...] with
opt(...). Applying this process to the grammar of lists yields the following class.

abstract class ListParsers extends Parsers {
def chr(p: char => boolean): Parser;
def chr(c: char): Parser = chr(d: char => d == c);

def letter : Parser = chr(Character.isLetter);
def digit : Parser = chr(Character.isDigit);

def ident : Parser = letter &&& rep(letter ||| digit);
def number : Parser = digit &&& rep(digit);
def list : Parser = chr(’(’) &&& opt(listElems) &&& chr(’)’);
def listElems : Parser = expr &&& (chr(’,’) &&& listElems ||| empty);
def expr : Parser = ident ||| number ||| list;

}

This class isolates the grammar from other aspects of parsing. It abstracts over the
type of input and over the method used to parse a single character (represented by
the abstract method chr(p: char => boolean)). The missing bits of information
need to be supplied by code applying the parser class.

It remains to explain how to implement a library with the combinators described
above. We will pack combinators and their underlying implementation in a base
class Parsers, which is inherited by ListParsers. The first question to decide is
which underlying representation type to use for a parser. We treat parsers here es-
sentially as functions that take a datum of the input type intype and that yield a
parse result of type Option[intype]. The Option type is predefined as follows.

trait Option[+a];
case object None extends Option[All];
case class Some[a](x: a) extends Option[a];

A parser applied to some input either succeeds or fails. If it fails, it returns the con-

13.1 Simple Combinator Parsing 119

stant None. If it succeeds, it returns a value of the form Some(in1) where in1 repre-
sents the input that remains to be parsed.

abstract class Parsers {
type intype;
abstract class Parser {
type Result = Option[intype];
def apply(in: intype): Result;

A parser also implements the combinators for sequence and alternative:

/*** p &&& q applies first p, and if that succeeds, then q

*/
def &&& (def q: Parser) = new Parser {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(in1) => q(in1)

}
}

/*** p ||| q applies first p, and, if that fails, then q.

*/
def ||| (def q: Parser) = new Parser {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => q(in)
case s => s

}
}

The implementations of the primitive parsers empty and fail are trivial:

val empty = new Parser { def apply(in: intype): Result = Some(in) }
val fail = new Parser { def apply(in: intype): Result = None }

The higher-order parser combinators opt and rep can be defined in terms of the
combinators for sequence and alternative:

def opt(p: Parser): Parser = p ||| empty; // p? = (p | <empty>)
def rep(p: Parser): Parser = opt(rep1(p)); // p* = [p+]
def rep1(p: Parser): Parser = p &&& rep(p); // p+ = p p*

} // end Parser

To run combinator parsers, we still need to decide on a way to handle parser in-
put. Several possibilities exist: The input could be represented as a list, as an array,
or as a random access file. Note that the presented combinator parsers use back-
tracking to change from one alternative to another. Therefore, it must be possible
to reset input to a point that was previously parsed. If one restricted the focus to

120 Combinator Parsing

LL(1) grammars, a non-backtracking implementation of the parser combinators in
class Parsers would also be possible. In that case sequential input methods based
on (say) iterators or sequential files would also be possible.

In our example, we represent the input by a pair of a string, which contains the input
phrase as a whole, and an index, which represents the portion of the input which has
not yet been parsed. Since the input string does not change, just the index needs to
be passed around as a result of individual parse steps. This leads to the following
class of parsers that read strings:

class ParseString(s: String) extends Parsers {
type intype = int;
def chr(p: char => boolean) = new Parser {
def apply(in: int): Parser#Result =
if (in < s.length() && p(s charAt in)) Some(in + 1);
else None;

}
val input = 0;

}

This class implements a method chr(p: char => boolean) and a value input. The
chr method builds a parser that either reads a single character satisfying the given
predicate p or fails. All other parsers over strings are ultimately implemented in
terms of that method. The input value represents the input as a whole. In out case,
it is simply value 0, the start index of the string to be read.

Note apply’s result type, Parser#Result. This syntax selects the type element
Result of the type Parser. It thus corresponds roughly to selecting a static in-
ner class from some outer class in Java. Note that we could not have written
Parser.Result, as the latter would express selection of the Result element from
a value named Parser.

We have now extended the root class Parsers in two different directions: Class
ListParsers defines a grammar of phrases to be parsed, whereas class ParseString
defines a method by which such phrases are input. To write a concrete parsing ap-
plication, we need to define both grammar and input method. We do this by com-
bining two extensions of Parsers using a mixin composition. Here is the start of a
sample application:

object Test {
def main(args: Array[String]): unit = {
val ps = new ListParsers with ParseString(args(0));

The last line above creates a new family of parsers by composing class ListParsers
with class ParseString. The two classes share the common superclass Parsers. The
abstract method chr in ListParsers is implemented by class ParseString.

To run the parser, we apply the start symbol of the grammar expr the argument

13.2 Parsers that Produce Results 121

codeinput and observe the result:

ps.expr(input) match {
case Some(n) =>
System.out.println("parsed: " + args(0).substring(0, n));

case None =>
System.out.println("nothing parsed");

}
}

}// end Test

Note the syntax ps.expr(input), which treats the expr parser as if it was a function.
In Scala, objects with apply methods can be applied directly to arguments as if they
were functions.

Here is an example run of the program above:

> java examples.Test "(x,1,(y,z))"
parsed: (x,1,(y,z))
> java examples.Test "(x,,1,(y,z))"
nothing parsed

13.2 Parsers that Produce Results

The combinator library of the previous section does not support the generation of
output from parsing. But usually one does not just want to check whether a given
string belongs to the defined language, one also wants to convert the input string
into some internal representation such as an abstract syntax tree.

In this section, we modify our parser library to build parsers that produce results.
We will make use of the for-comprehensions introduced in Chapter 9. The basic
combinator of sequential composition, formerly p &&& q, now becomes

for (val x <- p; val y <- q) yield e .

Here, the names x and y are bound to the results of executing the parsers p and q. e
is an expression that uses these results to build the tree returned by the composed
parser.

Before describing the implementation of the new parser combinators, we explain
how the new building blocks are used. Say we want to modify our list parser so that
it returns an abstract syntax tree of the parsed expression. Syntax trees are given by
the following class hierarchy:

abstract class Tree{}
case class Id (s: String) extends Tree {}
case class Num(n: int) extends Tree {}

122 Combinator Parsing

case class Lst(elems: List[Tree]) extends Tree {}

That is, a syntax tree is an identifier, an integer number, or a Lst node with a list of
trees as descendants.

As a first step towards parsers that produce results we define three little parsers that
return a single read character as result.

abstract class CharParsers extends Parsers {
def any: Parser[char];
def chr(ch: char): Parser[char] =
for (val c <- any; c == ch) yield c;

def chr(p: char => boolean): Parser[char] =
for (val c <- any; p(c)) yield c;

}

The any parser succeeds with the first character of remaining input as long as input
is nonempty. It is abstract in class ListParsers since we want to abstract in this
class from the concrete input method used. The two chr parsers return as before
the first input character if it equals a given character or matches a given predicate.
They are now implemented in terms of any.

The next level is represented by parsers reading identifiers, numbers and lists. Here
is a parser for identifiers.

abstract class ListParsers extends CharParsers {
def ident: Parser[Tree] =
for (
val c: char <- chr(Character.isLetter);
val cs: List[char] <- rep(chr(Character.isLetterOrDigit))

) yield Id((c :: cs).mkString("", "", ""));

Remark: Because chr(...) returns a single character, its repetition rep(chr(...))

returns a list of characters. The yield part of the for-comprehension converts all
intermediate results into an Id node with a string as element. To convert the read
characters into a string, it conses them into a single list, and invokes the mkString

method on the result.

Here is a parser for numbers:

def number: Parser[Tree] =
for (
val d: char <- chr(Character.isDigit);
val ds: List[char] <- rep(chr(Character.isDigit))

) yield Num(((d - ’0’) /: ds) ((x, digit) => x * 10 + digit - ’0’));

Intermediate results are in this case the leading digit of the read number, followed
by a list of remaining digits. The yield part of the for-comprehension reduces these

13.2 Parsers that Produce Results 123

to a number by a fold-left operation.

Here is a parser for lists:

def list: Parser[Tree] =
for (
val _ <- chr(’(’);
val es <- listElems ||| succeed(List());
val _ <- chr(’)’)

) yield Lst(es);

def listElems: Parser[List[Tree]] =
for (
val x <- expr;
val xs <- chr(’,’) &&& listElems ||| succeed(List())

) yield x :: xs;

The list parser returns a Lst node with a list of trees as elements. That list is either
the result of listElems, or, if that fails, the empty list (expressed here as: the result
of a parser which always succeeds with the empty list as result).

The highest level of our grammar is represented by function expr:

def expr: Parser[Tree] =
ident ||| number ||| list

}// end ListParsers.

We now present the parser combinators that support the new scheme. Parsers that
succeed now return a parse result besides the un-consumed input.

abstract class Parsers {
type intype;
trait Parser[a] {
type Result = Option[Pair[a, intype]];
def apply(in: intype): Result;

Parsers are parameterized with the type of their result. The class Parser[a] now
defines new methods map, flatMap and filter. The for expressions are mapped by
the compiler to calls of these functions using the scheme described in Chapter 9.
For parsers, these methods are implemented as follows.

def filter(pred: a => boolean) = new Parser[a] {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(Pair(x, in1)) => if (pred(x)) Some(Pair(x, in1)) else None

}
}
def map[b](f: a => b) = new Parser[b] {

124 Combinator Parsing

def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(Pair(x, in1)) => Some(Pair(f(x), in1))

}
}
def flatMap[b](f: a => Parser[b]) = new Parser[b] {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(Pair(x, in1)) => f(x).apply(in1)

}
}

The filter method takes as parameter a predicate p which it applies to the results
of the current parser. If the predicate is false, the parser fails by returning None; oth-
erwise it returns the result of the current parser. The map method takes as parameter
a function f which it applies to the results of the current parser. The flatMap takes
as parameter a function f which returns a parser. It applies f to the result of the
current parser and then continues with the resulting parser. The ||| method is es-
sentially defined as before. The &&& method can now be defined in terms of for.

def ||| (def p: Parser[a]) = new Parser[a] {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => p(in)
case s => s

}
}

def &&& [b](def p: Parser[b]): Parser[b] =
for (val _ <- this; val x <- p) yield x;

}// end Parser

The primitive parser succeed replaces empty. It consumes no input and returns its
parameter as result.

def succeed[a](x: a) = new Parser[a] {
def apply(in: intype) = Some(Pair(x, in))

}

The parser combinators rep and opt now also return results. rep returns a list which
contains as elements the results of each iteration of its sub-parser. opt returns a list
which is either empty or returns as single element the result of the optional parser.

def rep[a](p: Parser[a]): Parser[List[a]] =
rep1(p) ||| succeed(List());

def rep1[a](p: Parser[a]): Parser[List[a]] =
for (val x <- p; val xs <- rep(p)) yield x :: xs;

13.2 Parsers that Produce Results 125

def opt[a](p: Parser[a]): Parser[List[a]] =
(for (val x <- p) yield List(x)) ||| succeed(List());

} // end Parsers

The root class Parsers abstracts over which kind of input is parsed. As before, we
determine the input method by a separate class. Here is ParseString, this time
adapted to parsers that return results. It defines now the method any, which returns
the first input character.

class ParseString(s: String) extends Parsers {
type intype = int;
val input = 0;
def any = new Parser[char] {
def apply(in: int): Parser[char]#Result =
if (in < s.length()) Some(Pair(s charAt in, in + 1)) else None;

}
}

The rest of the application is as before. Here is a test program which constructs a
list parser over strings and prints out the result of applying it to the command line
argument.

object Test {
def main(args: Array[String]): unit = {
val ps = new ListParsers with ParseString(args(0));
ps.expr(ps.input) match {
case Some(Pair(list, _)) => System.out.println("parsed: " + list);
case None => "nothing parsed"

}
}

}

Exercise 13.2.1 The parsers we have defined so far can succeed even if there is
some input beyond the parsed text. To prevent this, one needs a parser which rec-
ognizes the end of input. Redesign the parser library so that such a parser can be
introduced. Which classes need to be modified?

Chapter 14

Hindley/Milner Type Inference

This chapter demonstrates Scala’s data types and pattern matching by developing a
type inference system in the Hindley/Milner style [Mil78]. The source language for
the type inferencer is lambda calculus with a let construct called Mini-ML. Abstract
syntax trees for the Mini-ML are represented by the following data type of Terms.

trait Term {}
case class Var(x: String) extends Term {
override def toString() = x

}
case class Lam(x: String, e: Term) extends Term {
override def toString() = "(\\" + x + "." + e + ")"

}
case class App(f: Term, e: Term) extends Term {
override def toString() = "(" + f + " " + e + ")"

}
case class Let(x: String, e: Term, f: Term) extends Term {
override def toString() = "let " + x + " = " + e + " in " + f;

}

There are four tree constructors: Var for variables, Lam for function abstractions, App
for function applications, and Let for let expressions. Each case class overrides the
toString() method of class Any, so that terms can be printed in legible form.

We next define the types that are computed by the inference system.

sealed trait Type {}
case class Tyvar(a: String) extends Type {
override def toString() = a

}
case class Arrow(t1: Type, t2: Type) extends Type {
override def toString() = "(" + t1 + "->" + t2 + ")"

}

128 Hindley/Milner Type Inference

case class Tycon(k: String, ts: List[Type]) extends Type {
override def toString() =
k + (if (ts.isEmpty) "" else ts.mkString("[", ",", "]"))

}

There are three type constructors: Tyvar for type variables, Arrow for function types
and Tycon for type constructors such as boolean or List. Type constructors have as
component a list of their type parameters. This list is empty for type constants such
as boolean. Again, the type constructors implement the toString method in order
to display types legibly.

Note that Type is a sealed class. This means that no subclasses or data constructors
that extend Type can be formed outside the sequence of definitions in which Type is
defined. This makes Type a closed algebraic data type with exactly three alternatives.
By contrast, type Term is an open algebraic type for which further alternatives can be
defined.

The main parts of the type inferencer are contained in object typeInfer. We start
with a utility function which creates fresh type variables:

object typeInfer {
private var n: Int = 0;
def newTyvar(): Type = { n = n + 1 ; Tyvar("a" + n) }

We next define a class for substitutions. A substitution is an idempotent function
from type variables to types. It maps a finite number of type variables to some types,
and leaves all other type variables unchanged. The meaning of a substitution is
extended point-wise to a mapping from types to types.

trait Subst extends Any with Function1[Type,Type] {

def lookup(x: Tyvar): Type;

def apply(t: Type): Type = t match {
case tv @ Tyvar(a) => val u = lookup(tv); if (t == u) t else apply(u);
case Arrow(t1, t2) => Arrow(apply(t1), apply(t2))
case Tycon(k, ts) => Tycon(k, ts map apply)

}

def extend(x: Tyvar, t: Type) = new Subst {
def lookup(y: Tyvar): Type = if (x == y) t else Subst.this.lookup(y);

}
}
val emptySubst = new Subst { def lookup(t: Tyvar): Type = t }

129

We represent substitutions as functions, of type Type => Type. This is achieved by
making class Subst inherit from the unary function type Function1[Type, Type]1.
To be an instance of this type, a substitution s has to implement an apply method
that takes a Type as argument and yields another Type as result. A function applica-
tion s(t) is then interpreted as s.apply(t).

The lookup method is abstract in class Subst. There are two concrete forms of sub-
stitutions which differ in how they implement this method. One form is defined by
the emptySubst value, the other is defined by the extend method in class Subst.

The next data type describes type schemes, which consist of a type and a list of
names of type variables which appear universally quantified in the type scheme. For
instance, the type scheme ∀a∀b.a→b would be represented in the type checker as:

TypeScheme(List(TyVar("a"), TyVar("b")), Arrow(Tyvar("a"), Tyvar("b"))) .

The class definition of type schemes does not carry an extends clause; this means
that type schemes extend directly class AnyRef. Even though there is only one pos-
sible way to construct a type scheme, a case class representation was chosen since
it offers convenient ways to decompose an instance of this type into its parts.

case class TypeScheme(tyvars: List[String], tpe: Type) {
def newInstance: Type = {
(emptySubst /: tyvars) ((s, tv) => s.extend(tv, newTyvar())) (tpe);

}
}

Type scheme objects come with a method newInstance, which returns the type con-
tained in the scheme after all universally type variables have been renamed to fresh
variables. The implementation of this method folds (with /:) the type scheme’s
type variables with an operation which extends a given substitution s by renaming
a given type variable tv to a fresh type variable. The resulting substitution renames
all type variables of the scheme to fresh ones. This substitution is then applied to
the type part of the type scheme.

The last type we need in the type inferencer is Env, a type for environments, which
associate variable names with type schemes. They are represented by a type alias
Env in module typeInfer:

type Env = List[Pair[String, TypeScheme]];

There are two operations on environments. The lookup function returns the type
scheme associated with a given name, or null if the name is not recorded in the
environment.

1 The class inherits the function type as a mixin rather than as a direct superclass. This is because
in the current Scala implementation, the Function1 type is a Java interface, which cannot be used as
a direct superclass of some other class.

130 Hindley/Milner Type Inference

def lookup(env: Env, x: String): TypeScheme = env match {
case List() => null
case Pair(y, t) :: env1 => if (x == y) t else lookup(env1, x)

}

The gen function turns a given type into a type scheme, quantifying over all type
variables that are free in the type, but not in the environment.

def gen(env: Env, t: Type): TypeScheme =
TypeScheme(tyvars(t) diff tyvars(env), t);

The set of free type variables of a type is simply the set of all type variables which oc-
cur in the type. It is represented here as a list of type variables, which is constructed
as follows.

def tyvars(t: Type): List[Tyvar] = t match {
case tv @ Tyvar(a) =>
List(tv)

case Arrow(t1, t2) =>
tyvars(t1) union tyvars(t2)

case Tycon(k, ts) =>
(List[Tyvar]() /: ts) ((tvs, t) => tvs union tyvars(t));

}

Note that the syntax tv @ ... in the first pattern introduces a variable which is
bound to the pattern that follows. Note also that the explicit type parameter [Tyvar]
in the expression of the third clause is needed to make local type inference work.

The set of free type variables of a type scheme is the set of free type variables of its
type component, excluding any quantified type variables:

def tyvars(ts: TypeScheme): List[Tyvar] =
tyvars(ts.tpe) diff ts.tyvars;

Finally, the set of free type variables of an environment is the union of the free type
variables of all type schemes recorded in it.

def tyvars(env: Env): List[Tyvar] =
(List[Tyvar]() /: env) ((tvs, nt) => tvs union tyvars(nt._2));

A central operation of Hindley/Milner type checking is unification, which computes
a substitution to make two given types equal (such a substitution is called a unifier).
Function mgu computes the most general unifier of two given types t and u under a
pre-existing substitution s. That is, it returns the most general substitution s′ which
extends s, and which makes s′(t) and s′(u) equal types.

def mgu(t: Type, u: Type, s: Subst): Subst = Pair(s(t), s(u)) match {
case Pair(Tyvar(a), Tyvar(b)) if (a == b) =>

131

s
case Pair(Tyvar(a), _) if !(tyvars(u) contains a) =>
s.extend(Tyvar(a), u)

case Pair(_, Tyvar(a)) =>
mgu(u, t, s)

case Pair(Arrow(t1, t2), Arrow(u1, u2)) =>
mgu(t1, u1, mgu(t2, u2, s))

case Pair(Tycon(k1, ts), Tycon(k2, us)) if (k1 == k2) =>
(s /: (ts zip us)) ((s, tu) => mgu(tu._1, tu._2, s))

case _ =>
throw new TypeError("cannot unify " + s(t) + " with " + s(u))

}

The mgu function throws a TypeError exception if no unifier substitution exists. This
can happen because the two types have different type constructors at correspond-
ing places, or because a type variable is unified with a type that contains the type
variable itself. Such exceptions are modeled here as instances of case classes that
inherit from the predefined Exception class.

case class TypeError(s: String) extends Exception(s) {}

The main task of the type checker is implemented by function tp. This function
takes as parameters an environment env, a term e, a proto-type t , and a pre-existing
substitution s. The function yields a substitution s′ that extends s and that turns
s′(env) ` e : s′(t) into a derivable type judgment according to the derivation rules
of the Hindley/Milner type system [Mil78]. A TypeError exception is thrown if no
such substitution exists.

def tp(env: Env, e: Term, t: Type, s: Subst): Subst = {
current = e;
e match {
case Var(x) =>
val u = lookup(env, x);
if (u == null) throw new TypeError("undefined: " + x);
else mgu(u.newInstance, t, s)

case Lam(x, e1) =>
val a = newTyvar(), b = newTyvar();
val s1 = mgu(t, Arrow(a, b), s);
val env1 = Pair(x, TypeScheme(List(), a)) :: env;
tp(env1, e1, b, s1)

case App(e1, e2) =>
val a = newTyvar();
val s1 = tp(env, e1, Arrow(a, t), s);
tp(env, e2, a, s1)

132 Hindley/Milner Type Inference

case Let(x, e1, e2) =>
val a = newTyvar();
val s1 = tp(env, e1, a, s);
tp(Pair(x, gen(env, s1(a))) :: env, e2, t, s1)

}
}
var current: Term = null;

To aid error diagnostics, the tp function stores the currently analyzed sub-term in
variable current. Thus, if type checking is aborted with a TypeError exception, this
variable will contain the subterm that caused the problem.

The last function of the type inference module, typeOf, is a simplified facade for
tp. It computes the type of a given term e in a given environment env. It does
so by creating a fresh type variable a, computing a typing substitution that makes
env ` e : a into a derivable type judgment, and returning the result of applying the
substitution to a.

def typeOf(env: Env, e: Term): Type = {
val a = newTyvar();
tp(env, e, a, emptySubst)(a)

}
}// end typeInfer

To apply the type inferencer, it is convenient to have a predefined environment that
contains bindings for commonly used constants. The module predefined defines
an environment env that contains bindings for the types of booleans, numbers and
lists together with some primitive operations over them. It also defines a fixed point
operator fix, which can be used to represent recursion.

object predefined {
val booleanType = Tycon("Boolean", List());
val intType = Tycon("Int", List());
def listType(t: Type) = Tycon("List", List(t));

private def gen(t: Type): typeInfer.TypeScheme = typeInfer.gen(List(), t);
private val a = typeInfer.newTyvar();
val env = List(
Pair("true", gen(booleanType)),
Pair("false", gen(booleanType)),
Pair("if", gen(Arrow(booleanType, Arrow(a, Arrow(a, a))))),
Pair("zero", gen(intType)),
Pair("succ", gen(Arrow(intType, intType))),
Pair("nil", gen(listType(a))),
Pair("cons", gen(Arrow(a, Arrow(listType(a), listType(a))))),
Pair("isEmpty", gen(Arrow(listType(a), booleanType))),

133

Pair("head", gen(Arrow(listType(a), a))),
Pair("tail", gen(Arrow(listType(a), listType(a)))),
Pair("fix", gen(Arrow(Arrow(a, a), a)))

)
}

Here’s an example how the type inferencer can be used. Let’s define a function
showType which returns the type of a given term computed in the predefined en-
vironment Predefined.env:

object testInfer {
def showType(e: Term): String =
try {
typeInfer.typeOf(predefined.env, e).toString();

} catch {
case typeInfer.TypeError(msg) =>
"\n cannot type: " + typeInfer.current +
"\n reason: " + msg;

}

Then the application

> testInfer.showType(Lam("x", App(App(Var("cons"), Var("x")), Var("nil"))));

would give the response

> (a6->List[a6])

To make the type inferencer more useful, we complete it with a parser. Function
main of module testInfer parses and typechecks a Mini-ML expression which is
given as the first command line argument.

def main(args: Array[String]): unit = {
val ps = new MiniMLParsers with ParseString(args(0));
ps.all(ps.input) match {
case Some(Pair(term, _)) =>
System.out.println("" + term + ": " + showType(term));

case None =>
System.out.println("syntax error");

}
}

}// typeInf

To do the parsing, method main uses the combinator parser scheme of Chapter 13.
It creates a parser family ps as a mixin composition of parsers that understand Min-
iML (but do not know where input comes from) and parsers that read input from a
given string. The MiniMLParsers object implements parsers for the following gram-

134 Hindley/Milner Type Inference

mar.

term ::= "\" ident "." term
| term1 {term1}
| "let" ident "=" term "in" term

term1 ::= ident
| "(" term ")"

all ::= term ";"

Input as a whole is described by the production all; it consists of a term followed by
a semicolon. We allow “whitespace” consisting of one or more space, tabulator or
newline characters between any two lexemes (this is not reflected in the grammar
above). Identifiers are defined as in Chapter 13 except that an identifier cannot be
one of the two reserved words "let" and "in".

abstract class MiniMLParsers[intype] extends CharParsers[intype] {

/** whitespace */
def whitespace = rep{chr(’ ’) ||| chr(’\t’) ||| chr(’\n’)};

/** A given character, possible preceded by whitespace */
def wschr(ch: char) = whitespace &&& chr(ch);

/** identifiers or keywords */
def id: Parser[String] =
for (
val c: char <- whitespace &&& chr(Character.isLetter);
val cs: List[char] <- rep(chr(Character.isLetterOrDigit))

) yield (c :: cs).mkString("", "", "");

/** Non-keyword identifiers */
def ident: Parser[String] =
for (val s <- id; s != "let" && s != "in") yield s;

/** term = ’\’ ident ’.’ term | term1 {term1} | let ident "=" term in term */
def term: Parser[Term] =
(for (

val _ <- wschr(’\\’);
val x <- ident;
val _ <- wschr(’.’);
val t <- term)

yield Lam(x, t): Term)
|||
(for (

val letid <- id; letid == "let";
val x <- ident;
val _ <- wschr(’=’);

135

val t <- term;
val inid <- id; inid == "in";
val c <- term)

yield Let(x, t, c))
|||
(for (

val t <- term1;
val ts <- rep(term1))

yield (t /: ts)((f, arg) => App(f, arg)));

/** term1 = ident | ’(’ term ’)’ */
def term1: Parser[Term] =
(for (val s <- ident)
yield Var(s): Term)

|||
(for (

val _ <- wschr(’(’);
val t <- term;
val _ <- wschr(’)’))

yield t);

/** all = term ’;’ */
def all: Parser[Term] =
for (
val t <- term;
val _ <- wschr(’;’))

yield t;
}

Here are some sample MiniML programs and the output the type inferencer gives
for each of them:

> java testInfer
| "\x.\f.f(f x);"
(\x.(\f.(f (f x)))): (a8->((a8->a8)->a8))

> java testInfer
| "let id = \x.x
| in if (id true) (id nil) (id (cons zero nil));"
let id = (\x.x) in (((if (id true)) (id nil)) (id ((cons zero) nil))): List[Int]

> java testInfer
| "let id = \x.x
| in if (id true) (id nil);"
let id = (\x.x) in ((if (id true)) (id nil)): (List[a13]->List[a13])

136 Hindley/Milner Type Inference

> java testInfer
| "let length = fix (\len.\xs.
| if (isEmpty xs)
| zero
| (succ (len (tail xs))))
| in (length nil);"
let length = (fix (\len.(\xs.(((if (isEmpty xs)) zero)
(succ (len (tail xs))))))) in (length nil): Int

> java testInfer
| "let id = \x.x
| in if (id true) (id nil) zero;"
let id = (\x.x) in (((if (id true)) (id nil)) zero):
cannot type: zero
reason: cannot unify Int with List[a14]

Exercise 14.0.2 Using the parser library constructed in Exercise Exercise 13.2.1,
modify the MiniML parser library so that no marker “;” is necessary for indicating
the end of input.

Exercise 14.0.3 Extend the Mini-ML parser and type inferencer with a letrec con-
struct which allows the definition of recursive functions. Syntax:

letrec ident "=" term in term .

The typing of letrec is as for let, except that the defined identifier is visible in the
defining expression. Using letrec, the length function for lists can now be defined
as follows.

letrec length = \xs.
if (isEmpty xs)
zero
(succ (length (tail xs)))

in ...

Chapter 15

Abstractions for Concurrency

This section reviews common concurrent programming patterns and shows how
they can be implemented in Scala.

15.1 Signals and Monitors

Example 15.1.1 The monitor provides the basic means for mutual exclusion of pro-
cesses in Scala. Every instance of class AnyRef can be used as a monitor by calling
one or more of the methods below.

def synchronized[a] (def e: a): a;
def wait(): unit;
def wait(msec: long): unit;
def notify(): unit;
def notifyAll(): unit;

The synchronized method executes its argument computation e in mutual exclu-
sive mode – at any one time, only one thread can execute a synchronized argument
of a given monitor.

Threads can suspend inside a monitor by waiting on a signal. Threads that call the
wait method wait until a notify method of the same object is called subsequently
by some other thread. Calls to notify with no threads waiting for the signal are
ignored.

There is also a timed form of wait, which blocks only as long as no signal was re-
ceived or the specified amount of time (given in milliseconds) has elapsed. Fur-
thermore, there is a notifyAll method which unblocks all threads which wait for
the signal. These methods, as well as class Monitor are primitive in Scala; they are
implemented in terms of the underlying runtime system.

138 Abstractions for Concurrency

Typically, a thread waits for some condition to be established. If the condition does
not hold at the time of the wait call, the thread blocks until some other thread has
established the condition. It is the responsibility of this other thread to wake up
waiting processes by issuing a notify or notifyAll. Note however, that there is no
guarantee that a waiting process gets to run immediately after the call to notify is is-
sued. It could be that other processes get to run first which invalidate the condition
again. Therefore, the correct form of waiting for a condition C uses a while loop:

while (!C) wait();

As an example of how monitors are used, here is is an implementation of a bounded
buffer class.

class BoundedBuffer[a](N: Int) {
var in = 0, out = 0, n = 0;
val elems = new Array[a](N);

def put(x: a) = synchronized {
while (n >= N) wait();
elems(in) = x ; in = (in + 1) % N ; n = n + 1;
if (n == 1) notifyAll();

}

def get: a = synchronized {
while (n == 0) wait();
val x = elems(out) ; out = (out + 1) % N ; n = n - 1;
if (n == N - 1) notifyAll();
x

}
}

And here is a program using a bounded buffer to communicate between a producer
and a consumer process.

import scala.concurrent.ops._;
...
val buf = new BoundedBuffer[String](10)
spawn { while (true) { val s = produceString ; buf.put(s) } }
spawn { while (true) { val s = buf.get ; consumeString(s) } }
}

The spawn method spawns a new thread which executes the expression given in the
parameter. It is defined in object concurrent.ops as follows.

def spawn(def p: unit) = {
val t = new Thread() { override def run() = p; }
t.start()

15.2 SyncVars 139

}

15.2 SyncVars

A synchronized variable (or syncvar for short) offers get and put operations to read
and set the variable. get operations block until the variable has been defined. An
unset operation resets the variable to undefined state.

Here’s the standard implementation of synchronized variables.

package scala.concurrent;
class SyncVar[a] {
private var isDefined: Boolean = false;
private var value: a = _;
def get = synchronized {
if (!isDefined) wait();
value

}
def set(x: a) = synchronized {
value = x ; isDefined = true ; notifyAll();

}
def isSet: Boolean = synchronized {
isDefined;

}
def unset = synchronized {
isDefined = false;

}
}

15.3 Futures

A future is a value which is computed in parallel to some other client thread, to be
used by the client thread at some future time. Futures are used in order to make
good use of parallel processing resources. A typical usage is:

import scala.concurrent.ops._;
...
val x = future(someLengthyComputation);
anotherLengthyComputation;
val y = f(x()) + g(x());

The future method is defined in object scala.concurrent.ops as follows.

def future[a](def p: a): unit => a = {

140 Abstractions for Concurrency

val result = new SyncVar[a];
fork { result.set(p) }
(() => result.get)

}

The future method gets as parameter a computation p to be performed. The type
of the computation is arbitrary; it is represented by future’s type parameter a. The
future method defines a guard result, which takes a parameter representing the
result of the computation. It then forks off a new thread that computes the result
and invokes the result guard when it is finished. In parallel to this thread, the func-
tion returns an anonymous function of type a. When called, this functions waits on
the result guard to be invoked, and, once this happens returns the result argument.
At the same time, the function reinvokes the result guard with the same argument,
so that future invocations of the function can return the result immediately.

15.4 Parallel Computations

The next example presents a function par which takes a pair of computations as
parameters and which returns the results of the computations in another pair. The
two computations are performed in parallel.

The function is defined in object scala.concurrent.ops as follows.

def par[a, b](def xp: a, def yp: b): Pair[a, b] = {
val y = new SyncVar[b];
spawn { y set yp }
Pair(xp, y.get)

}

Defined in the same place is a function replicate which performs a number of
replicates of a computation in parallel. Each replication instance is passed an inte-
ger number which identifies it.

def replicate(start: Int, end: Int)(p: Int => Unit): Unit = {
if (start == end)
()

else if (start + 1 == end)
p(start)

else {
val mid = (start + end) / 2;
spawn { replicate(start, mid)(p) }
replicate(mid, end)(p)

}
}

15.5 Semaphores 141

The next function uses replicate to perform parallel computations on all elements
of an array.

def parMap[a,b](f: a => b, xs: Array[a]): Array[b] = {
val results = new Array[b](xs.length);
replicate(0, xs.length) { i => results(i) = f(xs(i)) }
results

}

15.5 Semaphores

A common mechanism for process synchronization is a lock (or: semaphore). A lock
offers two atomic actions: acquire and release. Here’s the implementation of a lock
in Scala:

package scala.concurrent;

class Lock {
var available = true;
def acquire = synchronized {
if (!available) wait();
available = false

}
def release = synchronized {
available = true;
notify()

}
}

15.6 Readers/Writers

A more complex form of synchronization distinguishes between readers which ac-
cess a common resource without modifying it and writers which can both access
and modify it. To synchronize readers and writers we need to implement opera-
tions startRead, startWrite, endRead, endWrite, such that:

• there can be multiple concurrent readers,

• there can only be one writer at one time,

• pending write requests have priority over pending read requests, but don’t
preempt ongoing read operations.

The following implementation of a readers/writers lock is based on the mailbox
concept (see Section 15.10).

142 Abstractions for Concurrency

import scala.concurrent._;

class ReadersWriters {
val m = new MailBox;
private case class Writers(n: int), Readers(n: int) { m send this; };
Writers(0); Readers(0);
def startRead = m receive {
case Writers(n) if n == 0 => m receive {
case Readers(n) => Writers(0) ; Readers(n+1);

}
}
def startWrite = m receive {
case Writers(n) =>
Writers(n+1);
m receive { case Readers(n) if n == 0 => }

}
def endRead = m receive {
case Readers(n) => Readers(n-1)

}
def endWrite = m receive {
case Writers(n) => Writers(n-1) ; if (n == 0) Readers(0)

}
}

15.7 Asynchronous Channels

A fundamental way of interprocess communication is the asynchronous channel.
Its implementation makes use the following simple class for linked lists:

class LinkedList[a] {
var elem: a = _;
var next: LinkedList[a] = null;

}

To facilitate insertion and deletion of elements into linked lists, every reference into
a linked list points to the node which precedes the node which conceptually forms
the top of the list. Empty linked lists start with a dummy node, whose successor is
null.

The channel class uses a linked list to store data that has been sent but not read yet.
In the opposite direction, a threads that wish to read from an empty channel, regis-
ter their presence by incrementing the nreaders field and waiting to be notified.

package scala.concurrent;

15.8 Synchronous Channels 143

class Channel[a] {
class LinkedList[a] {
var elem: a = _;
var next: LinkedList[a] = null;

}
private var written = new LinkedList[a];
private var lastWritten = new LinkedList[a];
private var nreaders = 0;

def write(x: a) = synchronized {
lastWritten.elem = x;
lastWritten.next = new LinkedList[a];
lastWritten = lastWritten.next;
if (nreaders > 0) notify();

}

def read: a = synchronized {
if (written.next == null) {
nreaders = nreaders + 1; wait(); nreaders = nreaders - 1;

}
val x = written.elem;
written = written.next;
x

}
}

15.8 Synchronous Channels

Here’s an implementation of synchronous channels, where the sender of a message
blocks until that message has been received. Synchronous channels only need a
single variable to store messages in transit, but three signals are used to coordinate
reader and writer processes.

package scala.concurrent;

class SyncChannel[a] {
private var data: a = _;
private var reading = false;
private var writing = false;

def write(x: a) = synchronized {
while (writing) wait();
data = x;
writing = true;

144 Abstractions for Concurrency

if (reading) notifyAll();
else while (!reading) wait();

}

def read: a = synchronized {
while (reading) wait();
reading = true;
while (!writing) wait();
val x = data;
writing = false;
reading = false;
notifyAll();
x

}
}

15.9 Workers

Here’s an implementation of a compute server in Scala. The server implements a
future method which evaluates a given expression in parallel with its caller. Unlike
the implementation in Section 15.3 the server computes futures only with a prede-
fined number of threads. A possible implementation of the server could run each
thread on a separate processor, and could hence avoid the overhead inherent in
context-switching several threads on a single processor.

import scala.concurrent._, scala.concurrent.ops._;

class ComputeServer(n: Int) {

private trait Job {
type t;
def task: t;
def ret(x: t): Unit;

}

private val openJobs = new Channel[Job]();

private def processor(i: Int): Unit = {
while (true) {
val job = openJobs.read;
job.ret(job.task)

}
}

15.9 Workers 145

def future[a](def p: a): () => a = {
val reply = new SyncVar[a]();
openJobs.write{
new Job {
type t = a;
def task = p;
def ret(x: a) = reply.set(x);

}
}
() => reply.get

}

spawn(replicate(0, n) { processor })
}

Expressions to be computed (i.e. arguments to calls of future) are written to the
openJobs channel. A job is an object with

• An abstract type t which describes the result of the compute job.

• A parameterless task method of type t which denotes the expression to be
computed.

• A return method which consumes the result once it is computed.

The compute server creates n processor processes as part of its initialization. Every
such process repeatedly consumes an open job, evaluates the job’s taskmethod and
passes the result on to the job’s return method. The polymorphic future method
creates a new job where the returnmethod is implemented by a guard named reply

and inserts this job into the set of open jobs by calling the isOpen guard. It then waits
until the corresponding reply guard is called.

The example demonstrates the use of abstract types. The abstract type t keeps track
of the result type of a job, which can vary between different jobs. Without abstract
types it would be impossible to implement the same class to the user in a statically
type-safe way, without relying on dynamic type tests and type casts.

Here is some code which uses the compute server to evaluate the expression 41 + 1.

object Test with Executable {
val server = new ComputeServer(1);
val f = server.future(41 + 1);
Console.println(f())

}

146 Abstractions for Concurrency

15.10 Mailboxes

Mailboxes are high-level, flexible constructs for process synchronization and com-
munication. They allow sending and receiving of messages. A message in this con-
text is an arbitrary object. There is a special message TIMEOUT which is used to signal
a time-out.

case object TIMEOUT;

Mailboxes implement the following signature.

class MailBox {
def send(msg: Any): unit;
def receive[a](f: PartialFunction[Any, a]): a;
def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a;

}

The state of a mailbox consists of a multi-set of messages. Messages are added to
the mailbox the send method. Messages are removed using the receive method,
which is passed a message processor f as argument, which is a partial function from
messages to some arbitrary result type. Typically, this function is implemented as a
pattern matching expression. The receive method blocks until there is a message
in the mailbox for which its message processor is defined. The matching message is
then removed from the mailbox and the blocked thread is restarted by applying the
message processor to the message. Both sent messages and receivers are ordered
in time. A receiver r is applied to a matching message m only if there is no other
(message, receiver) pair which precedes (m, r) in the partial ordering on pairs that
orders each component in time.

As a simple example of how mailboxes are used, consider a one-place buffer:

class OnePlaceBuffer {
private val m = new MailBox; // An internal mailbox
private case class Empty, Full(x: int); // Types of messages we deal with
m send Empty; // Initialization
def write(x: int): unit =
m receive { case Empty => m send Full(x) }

def read: int =
m receive { case Full(x) => m send Empty ; x }

}

Here’s how the mailbox class can be implemented:

class MailBox {
private abstract class Receiver extends Signal {
def isDefined(msg: Any): boolean;
var msg = null;

15.10 Mailboxes 147

}

We define an internal class for receivers with a test method isDefined, which indi-
cates whether the receiver is defined for a given message. The receiver inherits from
class Signal a notify method which is used to wake up a receiver thread. When the
receiver thread is woken up, the message it needs to be applied to is stored in the
msg variable of Receiver.

private val sent = new LinkedList[Any];
private var lastSent = sent;
private val receivers = new LinkedList[Receiver];
private var lastReceiver = receivers;

The mailbox class maintains two linked lists, one for sent but unconsumed mes-
sages, the other for waiting receivers.

def send(msg: Any): unit = synchronized {
var r = receivers, r1 = r.next;
while (r1 != null && !r1.elem.isDefined(msg)) {
r = r1; r1 = r1.next;

}
if (r1 != null) {
r.next = r1.next; r1.elem.msg = msg; r1.elem.notify;

} else {
lastSent = insert(lastSent, msg);

}
}

The send method first checks whether a waiting receiver is applicable to the sent
message. If yes, the receiver is notified. Otherwise, the message is appended to the
linked list of sent messages.

def receive[a](f: PartialFunction[Any, a]): a = {
val msg: Any = synchronized {
var s = sent, s1 = s.next;
while (s1 != null && !f.isDefinedAt(s1.elem)) {
s = s1; s1 = s1.next

}
if (s1 != null) {
s.next = s1.next; s1.elem

} else {
val r = insert(lastReceiver, new Receiver {
def isDefined(msg: Any) = f.isDefinedAt(msg);

});
lastReceiver = r;
r.elem.wait();
r.elem.msg

148 Abstractions for Concurrency

}
}
f(msg)

}

The receive method first checks whether the message processor function f can be
applied to a message that has already been sent but that was not yet consumed. If
yes, the thread continues immediately by applying f to the message. Otherwise, a
new receiver is created and linked into the receivers list, and the thread waits for
a notification on this receiver. Once the thread is woken up again, it continues by
applying f to the message that was stored in the receiver. The insert method on
linked lists is defined as follows.

def insert(l: LinkedList[a], x: a): LinkedList[a] = {
l.next = new LinkedList[a];
l.next.elem = x;
l.next.next = l.next;
l

}

The mailbox class also offers a method receiveWithinwhich blocks for only a speci-
fied maximal amount of time. If no message is received within the specified time in-
terval (given in milliseconds), the message processor argument f will be unblocked
with the special TIMEOUT message. The implementation of receiveWithin is quite
similar to receive:

def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a = {
val msg: Any = synchronized {
var s = sent, s1 = s.next;
while (s1 != null && !f.isDefinedAt(s1.elem)) {
s = s1; s1 = s1.next ;

}
if (s1 != null) {
s.next = s1.next; s1.elem

} else {
val r = insert(lastReceiver, new Receiver {

def isDefined(msg: Any) = f.isDefinedAt(msg);
});
lastReceiver = r;
r.elem.wait(msec);
if (r.elem.msg == null) r.elem.msg = TIMEOUT;
r.elem.msg

}
}
f(msg)

}

15.11 Actors 149

} // end MailBox

The only differences are the timed call to wait, and the statement following it.

15.11 Actors

Chapter 2 sketched as a program example the implementation of an electronic auc-
tion service. This service was based on high-level actor processes, that work by in-
specting messages in their mailbox using pattern matching. An actor is simply a
thread whose communication primitives are those of a mailbox. Actors are hence
defined as a mixin composition extension of Java’s standard Thread class with the
MailBox class.

abstract class Actor extends Thread with MailBox;

III THE SCALA LANGUAGE

SPECIFICATION

VERSION 1.0

Chapter 16

Lexical Syntax

Scala programs are written using the Unicode character set. This chapter defines
the two modes of Scala’s lexical syntax, the Scala mode and the XML mode. If
not otherwise mentioned, the following descriptions of Scala tokens refer to Scala
mode, and literal characters ‘c’ refer to the ASCII fragment \u0000-\u007F.

In Scala mode, Unicode escapes are replaced by the corresponding Unicode charac-
ter with the given hexadecimal code.

UnicodeEscape ::= \\{\\\\}u{u} HexDigit HexDigit HexDigit HexDigit
HexDigit ::= ’0’ | . . . | ‘9’ | ‘A’ | . . . | ‘F’ | ‘a’ | . . . | ‘f’ |

To construct tokens, characters are distinguished according to the following classes
(Unicode general category given in parentheses):

1. Whitespace characters. \u0020 | \u0009 | \u000D | \u000A

2. Letters, which include lower case letters(Ll), upper case letters(Lu), title-
case letters(Lt), other letters(Lo), letter numerals(Nl) and the two characters
\u0024 ‘$’ and \u005F ‘_’, which both count as upper case letters

3. Digits ‘0’ | . . . | ‘9’.

4. Parentheses ‘(’ | ‘)’ | ‘[’ | ‘]’ | ‘{’ | ‘}’.

5. Delimiter characters ‘‘’ | ‘’’ | ‘"’ | ‘.’ | ‘;’ | ‘,’.

6. Operator characters. These consist of all printable ASCII characters
\u0020-\u007F. which are in none of the sets above, mathematical sym-
bols(Sm) and other symbols(So).

154 Lexical Syntax

16.1 Identifiers

Syntax:

op ::= special {special}
varid ::= lower idrest
id ::= upper idrest

| varid
| op
| ‘‘‘string chars‘’’

idrest ::= {letter | digit} {’_’ (op | idrest)}

There are three ways to form an identifier. First, an identifier can start with a letter
which can be followed by an arbitrary sequence of letters and digits. This may be
followed by underscore ‘_’ characters and other string composed of either letters
and digits or of special characeters. Second, an identifier can start with a special
character followed by an arbitrary sequence of special characters. Finally, an iden-
tifier may also be formed by an arbitrary string between back-quotes (host systems
may impose some restrictions on which strings are legal for identifiers). As usual, a
longest match rule applies. For instance, the string

big_bob++=z3

decomposes into the three identifiers big_bob, ++=, and z3. The rules for pattern
matching further distinguish between variable identifiers, which start with a lower
case letter, and constant identifiers, which do not.

The ‘$’ character is reserved for compiler-synthesized identifiers. User programs
are not allowed to define identifiers which contain ‘$’ characters.

The following names are reserved words instead of being members of the syntactic
class id of lexical identifiers.

abstract case catch class def
do else extends false final
finally for if import new
null object override package private
protected return sealed super this
throw trait try true type
val var while with yield
_ : = => <- <: >: # @

The Unicode operator \u21D2 ‘⇒’ has the ASCII equivalent ‘=>’, which is also re-
served.

Example 16.1.1 Here are examples of identifiers:

x Object maxIndex p2p empty_?

16.2 Braces and Semicolons 155

+ +_field αρετη

16.2 Braces and Semicolons

A semicolon ‘;’ is implicitly inserted after every closing brace if there is a new line
character between closing brace and the next regular token after it, except if that
token cannot legally start a statement.

The tokens which cannot legally start a statement are the following delimiters and
reserved words:

catch else extends finally with yield
, . ; : = => <- <: <% >: # @)] }

16.3 Literals

There are literals for integer numbers (of types Int and Long), floating point num-
bers (of types Float and Double), characters, and strings. The syntax of these literals
is in each case as in Java.

Syntax:

intLit ::= “as in Java”
floatLit ::= “as in Java”
charLit ::= “as in Java”
stringLit ::= “as in Java”

16.4 Whitespace and Comments

Tokens may be separated by whitespace characters and/or comments. Comments
come in two forms:

A single-line comment is a sequence of characters which starts with // and extends
to the end of the line.

A multi-line comment is a sequence of characters between /* and */. Multi-line
comments may be nested.

16.5 XML mode

In order to allow literal inclusion of XML fragments, lexical analysis switches from
Scala mode to XML mode when encountering an opening angle bracket ’<’ in the

156 Lexical Syntax

following circumstance: The ’<’ must be preceded either by whitespace, an opening
parenthesis or an opening brace and immediately followed by a character starting
an XML name.

Syntax:

(whitespace | ’(’ | ’{’) ’<’ XNameStart

XNameStart ::= ‘_’ | BaseChar | Ideographic (as in W3C XML, but without ‘:’

The scanner switches from XML mode to Scala mode if either

• the XML expression or the XML pattern started by the initial ’<’ has been suc-
cessfully parsed, or if

• the parser encounters an embedded Scala expression or pattern and forces
the Scanner back to normal mode, until the Scala expression or pattern is suc-
cessully parsed. In this case, since code and XML fragments can be nested,
the parser has to maintain a stack that reflects the nesting of XML and Scala
expressions adequately.

Note that no Scala tokens are constructed in XML mode, and that comments are
interpreted as text.

Chapter 17

Identifiers, Names and Scopes

Names in Scala identify types, values, methods, and classes which are collectively
called entities. Names are introduced by definitions, declarations (§19) or import
clauses (§19.7), which are collectively called binders.

There are two different name spaces, one for types (§18) and one for terms (§21).
The same name may designate a type and a term, depending on the context where
the name is used.

A definition or declaration has a scope in which the entity defined by a single name
can be accessed using a simple name. Scopes are nested, and a definition or decla-
ration in some inner scope shadows a definition in an outer scope that contributes
to the same name space. Furthermore, a definition or declaration shadows bind-
ings introduced by a preceding import clause, even if the import clause is in the
same block. Import clauses, on the other hand, only shadow bindings introduced
by other import clauses in outer blocks.

A reference to an unqualified (type- or term-) identifier x is bound by the unique
binder, which

• defines an entity with name x in the same namespace as the identifier, and

• shadows all other binders that define entities with name x in that namespace.

It is an error if no such binder exists. If x is bound by an import clause, then the
simple name x is taken to be equivalent to the qualified name to which x is mapped
by the import clause. If x is bound by a definition or declaration, then x refers to
the entity introduced by that binder. In that case, the type of x is the type of the
referenced entity.

Example 17.0.1 Consider the following nested definitions and imports:

object m1 {

158 Identifiers, Names and Scopes

object m2 { val x: int = 1; val y: int = 2 }
object m3 { val x: boolean = true; val y: String = "" }
val x: int = 3;
{ import m2._; // shadows nothing

// reference to ‘x’ is ambiguous here
val x: String = "abc"; // shadows preceding import

// name ‘x’ refers to latest val definition
{ import m3._ // shadows only preceding import m2

// reference to ‘x’ is ambiguous here
// name ‘y’ refers to latest import clause

}
}

}

A reference to a qualified (type- or term-) identifier e.x refers to the member of the
type T of e which has the name x in the same namespace as the identifier. It is
an error if T is not a value type (§18.2). The type of e.x is the member type of the
referenced entity in T .

Chapter 18

Types

Syntax:

Type ::= Type1 ‘=>’ Type
| ‘(’ [Types] ‘)’ ‘=>’ Type
| Type1

Type1 ::= SimpleType {with SimpleType} [Refinement]
SimpleType ::= StableId

| SimpleType ‘#’ id
| Path ‘.’ type
| SimpleType TypeArgs
| ‘(’ Type ’)’

Types ::= Type {‘,’ Type}

We distinguish between first-order types and type constructors, which take type pa-
rameters and yield types. A subset of first-order types called value types represents
sets of (first-class) values. Value types are either concrete or abstract. Every con-
crete value type can be represented as a class type, i.e. a type designator (§18.2.3)
that refers to a class1 (§20.2), or as a compound type (§18.2.5) consisting of class
types and possibly also a refinement (§18.2.5) that further constrains the types of its
members.

A shorthand exists for denoting function types (§18.2.6). Abstract value types are
introduced by type parameters and abstract type bindings (§19.3). Parentheses in
types are used for grouping.

Non-value types capture properties of identifiers that are not values (§18.3). There
is no syntax to express these types directly in Scala.

1We assume that objects and packages also implicitly define a class (of the same name as the
object or package, but inaccessible to user programs).

160 Types

18.1 Paths

Syntax:

StableId ::= id
| Path ‘.’ id
| [id ’.’] super [‘[’ id ‘]’] ‘.’ id

Path ::= StableId
| [id ‘.’] this

Paths are not types themselves, but they can be a part of named types and in that
way form a central role in Scala’s type system.

A path is one of the following.

• The empty path ε (which cannot be written explicitly in user programs).

• C.this, where C references a class. The path this is taken as a shorthand for
C.this where C is the name of the class directly enclosing the reference.

• p.x where p is a path and x is a stable member of p. Stable members are
members introduced by value or object definitions, as well as packages.

• C.super.x or C.super[M].x where C references a class and x references a
stable member of the super class or designated mixin class M of C . The prefix
super is taken as a shorthand for C.super where C is the name of the class
directly enclosing the reference.

A stable identifier is a path which ends in an identifier.

18.2 Value Types

18.2.1 Singleton Types

Syntax:

SimpleType ::= Path ‘.’ type

A singleton type is of the form p.type, where p is a path pointing to a value expected
to conform to scala.AnyRef. The type denotes the set of values consisting of the
value denoted by p and null.

18.2.2 Type Projection

Syntax:

SimpleType ::= SimpleType ‘#’ id

18.2 Value Types 161

A type projection T #x references the type member named x of type T . T must be
either a singleton type, or a non-abstract class type, or a Java class type (in either of
the last two cases, it is guaranteed that T has no abstract type members).

18.2.3 Type Designators

Syntax:

SimpleType ::= StableId

A type designator refers to a named value type. It can be simple or qualified. All
such type designators are shorthands for type projections.

Specifically, the unqualified type name t where t is bound in some class, object, or
package C is taken as a shorthand for C.this.type#t . If t is not bound in a class,
object, or package, then t is taken as a shorthand for ε.type#t .

A qualified type designator has the form p.t where p is a path (§18.1) and t is a type
name. Such a type designator is equivalent to the type projection p.type#x.

Example 18.2.1 Some type designators and their expansions are listed below. We
assume a local type parameter t , a value maintable with a type member Node and
the standard class scala.Int,

t ε.type#t
Int scala.type#Int
scala.Int scala.type#Int
data.maintable.Node data.maintable.type#Node

18.2.4 Parameterized Types

Syntax:

SimpleType ::= SimpleType TypeArgs
TypeArgs ::= ‘[’ Types ‘]’

A parameterized type T [U1, . . . , Un] consists of a type designator T and type param-
eters U1, . . . , Un where n ≥ 1. T must refer to a type constructor which takes n type
parameters a1, . . . , an with lower bounds L1, . . . , Ln and upper bounds U1, . . . , Un .

The parameterized type is well-formed if each actual type parameter conforms to its
bounds, i.e. Liσ<: Ti <: Uiσ where σ is the substitution [a1 := T1, . . . , an := Tn].

Example 18.2.2 Given the partial type definitions:

class TreeMap[a <: Ord[a], b] { . . . }
class List[a] { . . . }
class I extends Ord[I] { . . . }

162 Types

the following parameterized types are well formed:

TreeMap[I, String]
List[I]
List[List[Boolean]]

Example 18.2.3 Given the type definitions of Example 18.2.2, the following types
are ill-formed:

TreeMap[I] // illegal: wrong number of parameters
TreeMap[List[I], Boolean] // illegal: type parameter not within bound

18.2.5 Compound Types

Syntax:

Type ::= SimpleType {with SimpleType} [Refinement]
Refinement ::= ‘{’ [RefineStat {‘;’ RefineStat}] ‘}’
RefineStat ::= Dcl

| type TypeDef
|

A compound type T1 with . . . with Tn {R } represents objects with members as
given in the component types T1, . . . , Tn and the refinement {R }. Each component
type Ti must be a class type . A refinement {R } contains declarations and type def-
initions. Each declaration or definition in a refinement must override a declaration
or definition in one of the component types T1, . . . , Tn . The usual rules for over-
riding (§20.1.5) apply. If no refinement is given, the empty refinement is implicitly
added, i.e. T1 with . . . with Tn is a shorthand for T1 with . . . with Tn {}.

18.2.6 Function Types

Syntax:

SimpleType ::= Type1 ‘=>’ Type
| ‘(’ [Types] ‘)’ ‘=>’ Type

The type (T1, . . . , Tn) => U represents the set of function values that take argu-
ments of types T1, . . . , Tn and yield results of type U . In the case of exactly one argu-
ment type T => U is a shorthand for (T) => U . Function types associate to the
right, e.g. (S) => (T) => U is the same as (S) => ((T) => U).

Function types are shorthands for class types that define apply functions. Specif-
ically, the n-ary function type (T1, . . . , Tn) => U is a shorthand for the class type
Functionn[T1, . . . , Tn,U]. Such class types are defined in the Scala library for n
between 0 and 9 as follows.

18.3 Non-Value Types 163

package scala;
trait Functionn[-T1, . . . , -Tn, +R] {
def apply(x1: T1, . . . , xn: Tn): R;
override def toString() = "<function>";

}

Hence, function types are covariant in their result type, and contravariant in their
argument types.

18.3 Non-Value Types

The types explained in the following do not denote sets of values, nor do they appear
explicitly in programs. They are introduced in this report as the internal types of
defined identifiers.

18.3.1 Method Types

A method type is denoted internally as (Ts)U , where (Ts) is a sequence of types
(T1, . . . , Tn) for some n ≥ 0 and U is a (value or method) type. This type represents
named methods that take arguments of types T1, . . . , Tn and that return a result of
type U .

Method types associate to the right: (Ts1)(Ts2)U is treated as (Ts1)((Ts2)U).

A special case are types of methods without any parameters. They are written here
=> T. Parameterless methods name expressions that are re-evaluated each time the
parameterless method name is referenced.

Method types do not exist as types of values. If a method name is used as a value, its
type is implicitly converted to a corresponding function type (§18.7).

Example 18.3.1 The declarations

def a: Int
def b (x: Int): Boolean
def c (x: Int) (y: String, z: String): String

produce the typings

a: => Int
b: (Int) Boolean
c: (Int) (String, String) String

164 Types

18.3.2 Polymorphic Method Types

A polymorphic method type is denoted internally as [tps]T where [tps] is a type
parameter section [a1 >: L1 <: U1, . . . , an >: Ln <: Un] for some n ≥ 0 and T
is a (value or method) type. This type represents named methods that take type
arguments S1, . . . , Sn which conform (§18.2.4) to the lower bounds L1, . . . , Ln and
the upper bounds U1, . . . , Un and that yield results of type T .

Example 18.3.2 The declarations

def empty[a]: List[a]
def union[a <: Comparable[a]] (x: Set[a], xs: Set[a]): Set[a]

produce the typings

empty : [a >: All <: Any] List[a]
union : [a >: All <: Comparable[a]] (x: Set[a], xs: Set[a]) Set[a] .

18.4 Base Classes and Member Definitions

Types, bounds and base classes of class members depend on the way the members
are referenced. Central here are three notions, namely:

1. the notion of the set of base classes of a type T ,

2. the notion of a type T in some class C seen from some prefix type S,

3. the notion of a member binding of some type T .

These notions are defined mutually recursively as follows.

1. The set of base classes of a type is a set of class types, given as follows.

• The base classes of a class type C are the base classes of class C .

• The base classes of an aliased type are the base classes of its alias.

• The base classes of an abstract type are the base classes of its upper bound.

• The base classes of a parameterized type C[T1, . . . , Tn] are the base classes of
type C , where every occurrence of a type parameter ai of C has been replaced
by the corresponding parameter type Ti .

• The base classes of a singleton type p.type are the base classes of the type of
p.

• The base classes of a compound type T1 with . . . with Tn {R } are the re-
duced union of the base classes of all Ti ’s. This means: Let the multi-set S

be the multi-set-union of the base classes of all Ti ’s. If S contains several

18.4 Base Classes and Member Definitions 165

type instances of the same class, say S i#C[T i
1 , . . . , T i

n] (i ∈ I), then all those
instances are replaced by one of them which conforms to all others. It is an
error if no such instance exists, or if C is not a trait (§20.3). It follows that the
reduced union, if it exists, produces a set of class types, where different types
are instances of different classes.

• The base classes of a type selection S#T are determined as follows. If T is
an alias or abstract type, the previous clauses apply. Otherwise, T must be a
(possibly parameterized) class type, which is defined in some class B. Then
the base classes of S#T are the base classes of T in B seen from the prefix type
S.

2. The notion of a type T in class C seen from some prefix type S makes sense only if
the prefix type S has a type instance of class C as a base class, say S′#C[T1, . . . , Tn].
Then we define as follows.

• If S = ε.type, then T in C seen from S is T itself.

• Otherwise, if T is the i ’th type parameter of some class D, then

– If S has a base class D[U1, . . . , Un], for some type parameters
[U1, . . . , Un], then T in C seen from S is Ui .

– Otherwise, if C is defined in a class C ′, then T in C seen from S is the
same as T in C ′ seen from S′.

– Otherwise, if C is not defined in another class, then T in C seen from S is
T itself.

• Otherwise, if T is the singleton type D.this.type for some class D then

– If D is a subclass of C and S has a type instance of class D among its base
classes, then T in C seen from S is S.

– Otherwise, if C is defined in a class C ′, then T in C seen from S is the
same as T in C ′ seen from S′.

– Otherwise, if C is not defined in another class, then T in C seen from S is
T itself.

• If T is some other type, then the described mapping is performed to all its
type components.

If T is a possibly parameterized class type, where T ’s class is defined in some other
class D, and S is some prefix type, then we use “T seen from S” as a shorthand for
“T in D seen from S”.

3. The member bindings of a type T are all bindings d such that there exists a type
instance of some class C among the base classes of T and there exists a definition
or declaration d ′ in C such that d results from d ′ by replacing every type T ′ in d ′ by
T ′ in C seen from T .

166 Types

The definition of a type projection S#t is the member binding d of the type t in S.
In that case, we also say that S#t is defined by d.

18.5 Relations between types

We define two relations between types.

Type equivalence T ≡U T and U are interchangeable in all contexts.
Conformance T <: U Type T conforms to type U .

18.5.1 Type Equivalence

Equivalence (≡) between types is the smallest congruence2 such that the following
holds:

• If t is defined by a type alias type t = T , then t is equivalent to T .

• If a path p has a singleton type q.type, then p.type ≡ q.type.

• If O is defined by an object definition, and p is a path consisting only of pack-
age or object selectors and ending in O, then O.this.type ≡ p.type.

• Two compound types are equivalent if their component types are pairwise
equivalent and their refinements are equivalent. Two refinements are equiva-
lent if they bind the same names and the modifiers, types and bounds of every
declared entity are equivalent in both refinements.

• Two method types are equivalent if they have equivalent result types, both
have the same number of parameters, and corresponding parameters have
equivalent types as well as the same def or * modifiers. Note that the names
of parameters do not matter for method type equivalence.

• Two polymorphic types are equivalent if they have the same number of type
parameters, and, after renaming one set of type parameters by another, the
result types as well as lower and upper bounds of corresponding type param-
eters are equivalent.

• Two overloaded types are equivalent if for every alternative type in either type
there exists an equivalent alternative type in the other.

18.5.2 Conformance

The conformance relation (<:) is the smallest transitive relation that satisfies the
following conditions.

• Conformance includes equivalence. If T ≡U then T <: U .

2 A congruence is an equivalence relation which is closed under formation of contexts

18.5 Relations between types 167

• For every value type T , scala.All<: T <: scala.Any.

• For every value type T <: scala.AnyRef one has scala.AllRef<: T .

• A type variable or abstract type t conforms to its upper bound and its lower
bound conforms to t .

• A class type or parameterized type c conforms to any of its base-types, b.

• A type projection T #t conforms to U#t if T conforms to U .

• A parameterized type T [T1, . . . , Tn] conforms to T [U1, . . . , Un] if the follow-
ing three conditions hold for i = 1, . . . , n.

– If the i ’th type parameter of T is declared covariant, then Ti <: Ui .

– If the i ’th type parameter of T is declared contravariant, then Ui <: Ti .

– If the i ’th type parameter of T is declared neither covariant nor con-
travariant, then Ui ≡ Ti .

• A compound type T1 with . . . with Tn {R } conforms to each of its compo-
nent types Ti .

• If T <: Ui for i = 1, . . . , n and for every binding of a type or value x in R there
exists a member binding of x in T subsuming it, then T conforms to the com-
pound type T1 with . . . with Tn {R }.

• If Ti ≡ T ′
i for i = 1, . . . , n and U conforms to U ′ then the method type

(T1, . . . , Tn)U conforms to (T ′
1, . . . , T ′

n)U ′.

• If, assuming L′
1 <: a1 <: U ′

1, . . . , L′
n <: an <: U ′

n one has Li <: L′
i and U ′

i <: Ui

for i = 1, . . . , n, as well as T <: T ′, then the polymorphic type [a1 >: L1 <:
U1, . . . , an >: Ln <: Un]T conforms to the polymorphic type [a1 >: L′

1 <:
U ′

1, . . . , an >: L′
n <: U ′

n]T ′.

• An overloaded type T1〈and〉 . . .〈and〉Tn conforms to each of its alternative
types Ti .

• A type S conforms to the overloaded type T1〈and〉 . . .〈and〉Tn if S conforms to
each alternative type Ti .

A declaration or definition in some compound type of class type C is subsumes an-
other declaration of the same name in some compound type or class type C ′, if one
of the following holds.

• A value declaration val x: T or value definition val x: T = e subsumes
a value declaration val x: T ′ if T <: T ′.

• A type alias type t = T subsumes a type alias type t = T ′ if T ≡ T ′.

• A type declaration type t >: L <: U subsumes a type declaration
type t >: L′ <: U ′ if L′ <: L and U <: U ′.

168 Types

• A type or class definition of some type t subsumes an abstract type declara-
tion type t >: L <: U if L <: t <: U .

The (<:) relation forms a partial order between types. The least upper bound or the
greatest lower bound of a set of types is understood to be relative to that order.

Note. The least upper bound of a set of types does not always exist. For instance,
consider the class definitions

class A[+t] {}
class B extends A[B];
class C extends A[C];

Then the types A[Any], A[A[Any]], A[A[A[Any]]], ... form a descending se-
quence of upper bounds for B and C. The least upper bound would be the infinite
limit of that sequence, which does not exist as a Scala type. Since cases like this are
in general impossible to detect, a Scala compiler is free to reject a term which has
a type specified as a least upper or greatest lower bound, and that bound would be
more complex than some compiler-set limit3.

18.6 Type Erasure

A type is called generic if it contains type arguments or type variables. Type erasure
is a mapping from (possibly generic) types to non-generic types. We write |T | for
the erasure of type T . The erasure mapping is defined as follows.

• The erasure of a type variable is the erasure of its upper bound.

• The erasure of a parameterized type T [T1, . . . , Tn] is |T |.
• The erasure of a singleton type p.type is the erasure of the type of p.

• The erasure of a type projection T #x is |T |#x.

• The erasure of a compound type T1 with . . . with Tn {R } is |T1|.
• The erasure of every other type is the type itself.

18.7 Implicit Conversions

The following implicit conversions are applied to expressions of method type that
are used as values, rather than being applied to some arguments.

3The current Scala compiler limits the nesting level of parameterization in a such bounds to 10.

18.7 Implicit Conversions 169

• A parameterless method m of type => T is converted to type T by evaluating
the expression to which m is bound.

• An expression e of polymorphic type

[a1 >: L1 <: U1, . . . , an >: Ln <: Un]T

which does not appear as the function part of a type application is con-
verted to type T by determining with local type inference (§25) instance types
T1, . . . , Tn for the type variables a1, . . . , an and implicitly embedding e in the
type application e[U1, . . . , Un] (§21.5).

• An expression e of monomorphic method type (Ts1) . . . (Tsn)U of arity n > 0
which does not appear as the function part of an application is converted to
a function type by implicitly embedding e in the following term, where x is
a fresh variable and each psi is a parameter section consisting of parameters
with fresh names of types Tsi :

(val x = e ; (ps1) . . . ⇒ . . . ⇒ (psn) ⇒ x(ps1) . . . (psn))

This conversion is not applicable to functions with call-by-name parameters
x: => T or repeated parameters x: T*, (§19.5), because its result would vi-
olate the well-formedness rules for anonymous functions (§21.20). Hence,
methods with such parameters always need to be applied to arguments im-
mediately.

When used in an expression, a value of type byte, char, or short is always implicitly
converted to a value of type int.

Implicit conversions can also be user-defined. This is expained in Chapter 23.

Chapter 19

Basic Declarations and Definitions

Syntax:

Dcl ::= val ValDcl
| var VarDcl
| def FunDcl
| type TypeDcl

Def ::= val PatDef
| var VarDef
| def FunDef
| type TypeDef
| TmplDef

A declaration introduces names and assigns them types. It can appear as one of the
statements of a class definition (§20.1) or as part of a refinement in a compound
type (18.2.5).

A definition introduces names that denote terms or types. It can form part of an
object or class definition or it can be local to a block. Both declarations and defini-
tions produce bindings that associate type names with type definitions or bounds,
and that associate term names with types.

The scope of a name introduced by a declaration or definition is the whole state-
ment sequence containing the binding. However, there is a restriction on forward
references: In a statement sequence s1 . . . sn , if a simple name in si refers to an entity
defined by s j where j ≥ i , then every non-empty statement between and including
si and s j must be an import clause, or a function, type, class, or object definition. It
may not be a value definition, a variable definition, or an expression.

172 Basic Declarations and Definitions

19.1 Value Declarations and Definitions

Syntax:

Dcl ::= val ValDcl
ValDcl ::= id {‘,’ id} ‘:’ Type
Def ::= val PatDef
PatDef ::= Pattern2 {‘,’ Pattern2} [‘:’ Type] ‘=’ Expr

A value declaration val x: T introduces x as a name of a value of type T .

A value definition val x: T = e defines x as a name of the value that results from
the evaluation of e. The type T may be omitted, in which case the type of expression
e is assumed. If a type T is given, then e is expected to conform to it.

Evaluation of the value definition implies evaluation of its right-hand side e. The
effect of the value definition is to bind x to the value of e converted to type T .

Value definitions can alternatively have a pattern (§22.1) as left-hand side. If p is
some pattern other than a simple name or a name followed by a colon and a type,
then the value definition val p = e is expanded as follows:

1. If the pattern p has bound variables x1, . . . , xn , where n > 1:

val $x = e.match {case p => scala.Tuplen(x1, . . . , xn)}
val x1 = $x._1
. . .
val xn = $x._n .

Here, $x is a fresh name. The class Tuplen is defined for n = 2, . . . , 9 in package
scala.

2. If p has a unique bound variable x:

val x = e.match { case p => x }

3. If p has no bound variables:

e.match { case p => ()}

Example 19.1.1 The following are examples of value definitions

val pi = 3.1415;
val pi: double = 3.1415; // equivalent to first definition
val Some(x) = f(); // a pattern definition
val x :: xs = mylist; // an infix pattern definition

The last two definitions have the following expansions.

val x = f().match { case Some(x) => x }

19.2 Variable Declarations and Definitions 173

val x$ = mylist.match { case x :: xs => scala.Tuple2(x, xs) }
val x = x$._1;
val xs = x$._2;

A value declaration val x1, . . . , xn: T is a shorthand for the sequence of value dec-
larations val x1: T ; ...; val xn: T . A value definition val p1, . . . , pn = e is
a shorthand for the sequence of value definitions val p1 = e; ...; val pn = e.
A value definition val p1, . . . , pn : T = e is a shorthand for the sequence of value
definitions val p1 : T = e; ...; val pn : T = e.

19.2 Variable Declarations and Definitions

Syntax:

Dcl ::= var VarDcl
Def ::= var VarDef
VarDcl ::= id {‘,’ id} ‘:’ Type
VarDef ::= id {‘,’ id} [‘:’ Type] ‘=’ Expr

| id {‘,’ id} ‘:’ Type ‘=’ ‘_’

A variable declaration var x: T is equivalent to declarations of a getter function x
and a setter function x_=, defined as follows:

def x: T;
def x_= (y: T): unit

An implementation of a class containing variable declarations may define these
variables using variable definitions, or it may define setter and getter functions di-
rectly.

A variable definition var x: T = e introduces a mutable variable with type T and
initial value as given by the expression e. The type T can be omitted, in which case
the type of e is assumed. If T is given, then e is expected to conform to it.

A variable definition var x: T = _ introduces a mutable variable with type T and
a default initial value. The default value depends on the type T as follows:

0 if T is int or one of its subrange types,
0L if T is long,
0.0f if T is float,
0.0d if T is double,
false if T is boolean,
() if T is unit,
null for all other types T .

174 Basic Declarations and Definitions

When they occur as members of a template, both forms of variable definition also
introduce a getter function x which returns the value currently assigned to the vari-
able, as well as a setter function x_= which changes the value currently assigned to
the variable. The functions have the same signatures as for a variable declaration.
The getter and setter functions are then members of the template instead of the
variable accessed by them.

Example 19.2.1 The following example shows how properties can be simulated in
Scala. It defines a class TimeOfDayVar of time values with updatable integer fields
representing hours, minutes, and seconds. Its implementation contains tests that
allow only legal values to be assigned to these fields. The user code, on the other
hand, accesses these fields just like normal variables.

class TimeOfDayVar {
private var h: int = 0;
private var m: int = 0;
private var s: int = 0;

def hours = h;
def hours_= (h: int) = if (0 <= h && h < 24) this.h = h

else throw new DateError();

def minutes = m;
def minutes_= (m: int) = if (0 <= m && m < 60) this.m = m

else throw new DateError();

def seconds = s;
def seconds_= (s: int) = if (0 <= s && s < 60) this.s = s

else throw new DateError();
}
val d = new TimeOfDayVar;
d.hours = 8; d.minutes = 30; d.seconds = 0;
d.hours = 25; // throws a DateError exception

A variable declaration var x1, . . . , xn: T is a shorthand for the se-
quence of variable declarations var x1: T ; ...; var xn: T . A vari-
able definition var x1, . . . , xn = e is a shorthand for the sequence of
variable definitions var x1 = e; ...; var xn = e. A variable definition
var x1, . . . , xn : T = e is a shorthand for the sequence of variable definitions
var x1 : T = e; ...; var xn : T = e.

19.3 Type Declarations and Type Aliases

Syntax:

19.3 Type Declarations and Type Aliases 175

Dcl ::= type TypeDcl
TypeDcl ::= id [>: Type] [<: Type]
Def ::= type TypeDef
TypeDef ::= id [TypeParamClause] ‘=’ Type

A type declaration type t >: L <: U declares t to be an abstract type with lower
bound type L and upper bound type U . If such a declaration appears as a member
declaration of a type, implementations of the type may implement t with any type
T for which L <: T <: U . Either or both bounds may be omitted. If the lower bound L
is missing, the bottom type scala.All is assumed. If the upper bound U is missing,
the top type scala.Any is assumed.

A type alias type t = T defines t to be an alias name for the type T . The left hand
side of a type alias may have a type parameter clause, e.g. type t[tps] = T . The
scope of a type parameter extends over the right hand side T and the type parameter
clause tps itself.

The scope rules for definitions (§19) and type parameters (§19.5) make it possible
that a type name appears in its own bound or in its right-hand side. However, it is
a static error if a type alias refers recursively to the defined type constructor itself.
That is, the type T in a type alias type t[tps] = T may not refer directly or indi-
rectly to the name t . It is also an error if an abstract type is directly or indirectly its
own upper or lower bound.

Example 19.3.1 The following are legal type declarations and definitions:

type IntList = List[Integer];
type T <: Comparable[T];
type Two[a] = Tuple2[a, a];

The following are illegal:

type Abs = Comparable[Abs]; // recursive type alias

type S <: T; // S, T are bounded by themselves.
type T <: S;

type T <: AnyRef with T; // T is abstract, may not be part of
// compound type

type T >: Comparable[T.That]; // Cannot select from T.
// T is a type, not a value

If a type alias type t[tps] = S refers to a class type S, the name t can also be used
as a constructor for objects of type S.

Example 19.3.2 The Predef module contains a definition which establishes Pair

as an alias of the parameterized class Tuple2:

176 Basic Declarations and Definitions

type Pair[+a, +b] = Tuple2[a, b];

As a consequence, for any two types S and T , the type Pair[S, T] is equivalent to
the type Tuple2[S, T]. Pair can also be used as a constructor instead of Tuple2,
as in

new Pair[Int, Int](1, 2) .

19.4 Type Parameters

Syntax:

TypeParamClause ::= ‘[’ VarTypeParam {‘,’ VarTypeParam} ‘]’
VarTypeParam ::= [‘+’ | ‘-’] TypeParam
TypeParam ::= id [>: Type] [<: Type | <% Type]

Type parameters appear in type definitions, class definitions, and function defini-
tions. The most general form of a type parameter is ±t >: L <: U . Here, L, and U
are lower and upper bounds that constrain possible type arguments for the param-
eter, and ± is a variance, i.e. an optional prefix of either +, or -.

The names of all type parameters in a type parameter clause must be pairwise dif-
ferent. The scope of a type parameter includes in each case the whole type param-
eter clause. Therefore it is possible that a type parameter appears as part of its own
bounds or the bounds of other type parameters in the same clause. However, a type
parameter may not be bounded directly or indirectly by itself.

Example 19.4.1 Here are some well-formed type parameter clauses:

[s, t]
[ex <: Throwable]
[a <: Ord[b], b <: a]
[a, b, c >: a <: b]

The following type parameter clauses are illegal since type parameter are bounded
by themselves.

[a >: a]
[a <: b, b <: c, c <: a]

Variance annotations indicate how type instances with the given type parameters
vary with respect to subtyping (§18.5.2). A ‘+’ variance indicates a covariant depen-
dency, a ‘-’ variance indicates a contravariant dependency, and a missing variance
indication indicates an invariant dependency.

A variance annotation constrains the way the annotated type variable may ap-

19.4 Type Parameters 177

pear in the type or class which binds the type parameter. In a type definition
type t[tps] = S, type parameters labeled ‘+’ must only appear in covariant po-
sition in S whereas type parameters labeled ‘-’ must only appear in contravariant
position. Analogously, for a class definition class c[tps](ps): s extends t , type
parameters labeled ‘+’ must only appear in covariant position in the self type s and
the template t , whereas type parameters labeled ‘-’ must only appear in contravari-
ant position.

The variance position of a type parameter in a type or template is defined as follows.
Let the opposite of covariance be contravariance, and the opposite of invariance be
itself. The top-level of the type or template is always in covariant position. The
variance position changes at the following constructs.

• The variance position of a method parameter is the opposite of the variance
position of the enclosing parameter clause.

• The variance position of a type parameter is the opposite of the variance po-
sition of the enclosing type parameter clause.

• The variance position of the lower bound of a type declaration or type param-
eter is the opposite of the variance position of the type declaration or param-
eter.

• The right hand side S of a type alias type t[tps] = S is always in invariant
position.

• The type of a mutable variable is always in invariant position.

• The prefix S of a type selection S#T is always in invariant position.

• For a type argument T of a type S[. . .T . . .]: If the corresponding type pa-
rameter is invariant, then T is in invariant position. If the corresponding type
parameter is contravariant, the variance position of T is the opposite of the
variance position of the enclosing type S[. . .T . . .].

Example 19.4.2 The following variance annotation is legal.

abstract class P[+a, +b] {
def fst: a; def snd: b

}

With this variance annotation, elements of type P subtype covariantly with respect
to their arguments. For instance,

P[IOException, String] <: P[Throwable, AnyRef] .

If we make the elements of P mutable, the variance annotation becomes illegal.

abstract class Q[+a, +b] {
var fst: a; // **** error: illegal variance:

178 Basic Declarations and Definitions

var snd: b // ‘a’, ‘b’ occur in invariant position.
}

Example 19.4.3 The following variance annotation is illegal, since a appears in
contravariant position in the parameter of append:

trait Vector[+a] {
def append(x: Vector[a]): Vector[a];

// **** error: illegal variance:
// ‘a’ occurs in contravariant position.

}

The problem can be avoided by generalizing the type of append by means of a lower
bound:

trait Vector[+a] {
def append[b >: a](x: Vector[b]): Vector[b];

}

Example 19.4.4 Here is a case where a contravariant type parameter is useful.

trait OutputChannel[-a] {
def write(x: a): unit

}

With that annotation, we have that OutputChannel[AnyRef] conforms to
OutputChannel[String]. That is, a channel on which one can write any object can
substitute for a channel on which one can write only strings.

19.5 Function Declarations and Definitions

Syntax:

Dcl ::= def FunDcl
FunDcl ::= FunSig {‘,’ FunSig} ‘:’ Type
Def ::= def FunDef
FunDef ::= FunSig {‘,’ FunSig} [‘:’ Type] ‘=’ Expr
FunSig ::= id [FunTypeParamClause] {ParamClause}
FunTypeParamClause ::= ‘[’ TypeParam {‘,’ TypeParam} ‘]’
ParamClause ::= ‘(’ [Param {‘,’ Param}] ‘)’
Param ::= id ‘:’ [‘=>’] Type [‘*’]

A function declaration has the form def f psig: T , where f is the function’s
name, psig is its parameter signature and T is its result type. A function defini-
tion f psig: T = e also includes a function body e, i.e. an expression which defines

19.5 Function Declarations and Definitions 179

the function’s result. A parameter signature consists of an optional type parameter
clause [tps], followed by zero or more value parameter clauses (ps1). . .(psn). Such
a declaration or definition introduces a value with a (possibly polymorphic) method
type whose parameter types and result type are as given.

A type parameter clause tps consists of one or more type declarations (§19.3), which
introduce type parameters, possibly with bounds. The scope of a type parameter
includes the whole signature, including any of the type parameter bounds as well as
the function body, if it is present.

A value parameter clause ps consists of zero or more formal parameter bindings
such as x: T , which bind value parameters and associate them with their types.
The scope of a formal value parameter name x is the function body, if one is given.
Both type parameter names and value parameter names must be pairwise distinct.

The type of a value parameter may be prefixed by =>, e.g. x: => T . The type of
such a parameter is then the parameterless method type => T . This indicates that
the corresponding argument is not evaluated at the point of function application,
but instead is evaluated at each use within the function. That is, the argument is
evaluated using call-by-name.

Example 19.5.1 The declaration

def whileLoop (cond: => Boolean) (stat: => Unit): Unit

indicates that both parameters of while are evaluated using call-by-name.

The last value parameter of a parameter section may be suffixed by “*”, e.g.
(..., x:T *). The type of such a repeated parameter inside the method is then
the sequence type scala.Seq[T]. Methods with repeated parameters T * take
a variable number of arguments of type T . That is, if a method m with type
(T1, . . . , Tn ,S*)U is applied to arguments (e1, . . . , ek) where k ≥ n, then m is taken
in that application to have type (T1, . . . , Tn ,S, . . . , S)U , with k−n occurrences of type
S.

Example 19.5.2 The following method definition computes the sum of a variable
number of integer arguments.

def sum(args: int*) {
var result = 0;
for (val arg <- args.elements) result = result + arg;
result

}

The following applications of this method yield 0, 1, 6, in that order.

sum()
sum(1)
sum(1, 2, 3, 4, 5)

180 Basic Declarations and Definitions

The type of the function body must conform to the function’s declared result type,
if one is given. If the function definition is not recursive, the result type may be
omitted, in which case it is determined from the type of the function body.

For any index i let fsigi be a function signature consisting of a function
name, an optional type parameter section, and zero or more parameter sec-
tions. Then a function declaration def fsig1, . . . , fsign: T is a shorthand for
the sequence of function declarations def fsig1: T ; ...; def fsign: T . A
function definition def fsig1, . . . , fsign = e is a shorthand for the sequence of
function definitions def fsig1 = e; ...; def fsign = e. A function definition
def fsig1, . . . , fsign : T = e is a shorthand for the sequence of function definitions
def fsig1 : T = e; ...; def fsign : T = e.

19.6 Overloaded Definitions

An overloaded definition is a set of n > 1 value or function definitions in the same
statement sequence that define the same name, binding it to types T1, . . . , Tn , re-
spectively. The individual definitions are called alternatives. Overloaded definitions
may only appear in the statement sequence of a template. Alternatives always need
to specify the type of the defined entity completely. It is an error if the types of two
alternatives Ti and T j have the same erasure (§18.6).

19.7 Import Clauses

Syntax:

Import ::= import ImportExpr {‘,’ ImportExpr}
ImportExpr ::= StableId ‘.’ (id | ‘_’ | ImportSelectors)
ImportSelectors ::= ‘{’ {ImportSelector ‘,’}

(ImportSelector | ‘_’) ‘}’
ImportSelector ::= id [‘=>’ id | ‘=>’ ‘_’]

An import clause has the form import p.I where p is a stable identifier (§18.1)
and I is an import expression. The import expression determines a set of names of
members of p which are made available without qualification. The most general
form of an import expression is a list of import selectors

{ x1 => y1, . . . , xn => yn, _ }

for n ≥ 0, where the final wildcard ‘_’ may be absent. It makes available each mem-
ber p.xi under the unqualified name yi . I.e. every import selector xi => yi re-
names p.xi to yi . If a final wildcard is present, all members z of p other than
x1, . . . , xn are also made available under their own unqualified names.

19.7 Import Clauses 181

Import selectors work in the same way for type and term members. For instance, an
import clause import p.{x => y } renames the term name p.x to the term name
y and the type name p.x to the type name y . At least one of these two names must
reference a member of p.

If the target in an import selector is a wildcard, the import selector hides access to
the source member. For instance, the import selector x => _ “renames” x to the
wildcard symbol (which is unaccessible as a name in user programs), and thereby
effectively prevents unqualified access to x. This is useful if there is a final wild-
card in the same import selector list, which imports all members not mentioned in
previous import selectors.

Several shorthands exist. An import selector may be just a simple name x. In
this case, x is imported without renaming, so the import selector is equivalent to
x => x. Furthermore, it is possible to replace the whole import selector list by
a single identifier or wildcard. The import clause import p.x is equivalent to
import p.{x } , i.e. it makes available without qualification the member x of p. The
import clause import p._ is equivalent to import p.{_}, i.e. it makes available
without qualification all members of p (this is analogous to import p.* in Java).

An import clause with multiple import expressions import p1.I1, . . . , pn.In is in-
terpreted as a sequence of import clauses import p1.I1; . . .; import pn.In .

Example 19.7.1 Consider the object definition:

object M {
def z = 0, one = 1;
def add(x: Int, y: Int): Int = x + y

}

Then the block

{ import M.{one, z => zero, _}; add(zero, one) }

is equivalent to the block

{ M.add(M.z, M.one) } .

Chapter 20

Classes and Objects

Syntax:

TmplDef ::= ([case] class | trait) ClassDef
| [case] object ObjectDef

Classes (§20.2) and objects (§20.4) are both defined in terms of templates.

20.1 Templates

Syntax:

Template ::= Constr {‘with’ Constr} [TemplateBody]
TemplateBody ::= ‘{’ [TemplateStat {‘;’ TemplateStat}] ‘}’

A template defines the type signature, behavior and initial state of a class
of objects or of a single object. Templates form part of instance cre-
ation expressions, class definitions, and object definitions. A template
sc with mc1 with . . . with mcn {stats} consists of a constructor invocation sc
which defines the template’s superclass, constructor invocations mc1, . . . , mcn (n ≥
0), which define the template’s mixin classes, and a statement sequence stats which
contains additional member definitions for the template. Superclass and mixin
classes together are called the parent classes of a template. They must be pairwise
different. The superclass of a template must be a subtype of the superclass of each
mixin class. The least proper supertype of a template is the class type or compound
type (§18.2.5) consisting of the its parent classes.

Member definitions define new members or overwrite members in the parent
classes. If the template forms part of a class definition, the statement part stats
may also contain declarations of abstract members.

184 Classes and Objects

Inheriting from Java Types. A template may have a Java class as its superclass and
Java interfaces as its mixin classes. On the other hand, it is not permitted to have a
Java class as a mixin class, or a Java interface as a superclass.

20.1.1 Constructor Invocations

Syntax:

Constr ::= StableId [TypeArgs] [‘(’ [Exprs] ‘)’]

Constructor invocations define the type, members, and initial state of objects cre-
ated by an instance creation expression, or of parts of an object’s definition which
are inherited by a class or object definition. A constructor invocation is a function
application x.c(args), where x is a stable identifier (§18.1), c is a type name which
either designates a class or defines an alias type for one, and args is an argument list,
which matches one of the constructors of that class. The prefix ‘x.’ can be omitted.
The argument list (args) can also be omitted, in which case an empty argument list
() is implicitly added.

20.1.2 Base Classes

For every template, class type and constructor invocation we define two sets of class
types: the base classes and mixin base classes. Their definitions are as follows.

The mixin base classes of a template sc with mc1 with . . . with mcn {stats} are
the reduced union (§18.4) of the base classes of all mixins mci . The mixin base
classes of a class type C are the mixin base classes of the template augmented by
C itself. The mixin base classes of a constructor invocation of type T are the mixin
base classes of class T .

The base classes of a template consist are the reduced union of the base classes
of its superclass and the template’s mixin base classes. The base classes of class
scala.Any consist of just the class itself. The base classes of some other class type
C are the base classes of the template represented by C augmented by C itself. The
base classes of a constructor invocation of type T are the base classes of T .

The notions of mixin base classes and base classes are extended from classes to
arbitrary types following the definitions of §18.4.

Example 20.1.1 Consider the following class definitions:

class A;
class B extends A;
trait C extends A;
class D extends A;
class E extends B with C with D;
class F extends B with D with E;

20.1 Templates 185

The mixin base classes and base classes of classes A-F are given in the following
table:

Mixin base classes Base classes
A A A, ScalaObject, AnyRef, Any
B B B, A, ScalaObject, AnyRef, Any
C C C, A, ScalaObject, AnyRef, Any
D D D, A, ScalaObject, AnyRef, Any
E C, D, E E, B, C, D, A, ScalaObject, AnyRef, Any
F C, D, E, F F, B, D, E, C, A, ScalaObject, AnyRef, Any

Note that D is inherited twice by F, once directly, the other time indirectly through E.
This is permitted, since D is a trait.

20.1.3 Evaluation

The evaluation of a template or constructor invocation depends on whether the
template defines an object or is a superclass of a constructed object, or whether
it is used as a mixin for a defined object. In the second case, the evaluation of a tem-
plate used as a mixin depends on an actual superclass, which is known at the point
where the template is used in a definition of an object, but not at the point where
it is defined. The actual superclass is used in the determination of the meaning of
super (§21.3).

We therefore define two notions of template evaluation: (Plain) evaluation (as a
defining template or superclass) and mixin evaluation with a given superclass sc.
These notions are defined for templates and constructor invocations as follows.

A mixin evaluation with superclass sc of a template
sc ′ with mc1 with mcn {stats} consists of mixin evaluations with super-
class sc of the mixin constructor invocations mc1, . . . , mcn in the order they are
given, followed by an evaluation of the statement sequence stats. Within stats
the actual superclass refers to sc. A mixin evaluation with superclass sc of a class
constructor invocation ci consists of an evaluation of the constructor function
and its arguments in the order they are given, followed by a mixin evaluation with
superclass sc of the template represented by the constructor invocation.

An evaluation of a template sc with mc1 with mcn with (stats) consists of an
evaluation of the superclass constructor invocation sc, followed by a mixin evalua-
tion with superclass sc of the template. An evaluation of a class constructor invo-
cation ci consists of an evaluation of the constructor function and its arguments in
the order they are given, followed by an evaluation of the template represented by
the constructor invocation.

186 Classes and Objects

20.1.4 Template Members

The object resulting from evaluation of a template has directly bound members and
inherited members. Members can be abstract or concrete. For a template T these
categories are defined as follows.

1. A directly bound member of T is an entity introduced by a member definition
or declaration in T ’s statement sequence. The member is called abstract if it
is introduced by a declaration, concrete otherwise.

2. A concrete inherited member of T is a non-private, concrete member of one of
T ’s parent classes, except if a member with the same name is already directly
bound in T or the member is mixin-overridden in T . A member m of T ’s
superclass is mixin-overridden in T if there is a concrete member of a mixin
base class of T which either overrides m itself or overrides a member named
m of a base class of T ’s superclass.

3. An abstract inherited member of T is a non-private, abstract member of one
of T ’s parent classes Pi , except if the template has a directly bound or con-
crete inherited member with the same name, or the template has an abstract
member inherited from a parent class P j where j > i .

It is an error if a template has more than one member with the same name.

Example 20.1.2 Consider the class definitions

class A { def f: Int = 1 ; def g: Int = 2 ; def h: Int = 3 }
abstract class B { def f: Int = 4 ; def g: Int }
abstract class C extends A with B { def h: Int }

Then class C has a directly bound abstract member h. It inherits member f from
class B and member g from class A.

20.1.5 Overriding

A template member M that has the same name as a non-private member M ′ of a
base class (and that belongs to the same namespace) is said to override that mem-
ber. In this case the binding of the overriding member M must subsume (§18.5.2)
the binding of the overridden member M ′. Furthermore, the overridden definition
may not be a class definition. Method definitions may only override other method
definitions (or the methods implicitly defined by a variable definition). They may
not override value definitions. Finally, the following restrictions on modifiers apply
to M and M ′:

• M ′ must not be labeled final.

• M must not be labeled private.

20.1 Templates 187

• If M is labeled protected, then M ′ must also be labeled protected.

• If M ′ is not an abstract member, then M must be labeled override.

• If M ′ is labeled abstract and override, and M ′ is a member of the static su-
perclass of the class containing the definition of M , then M must also be la-
beled abstract and override.

Example 20.1.3 Consider the definitions:

trait Root { type T <: Root }
trait A extends Root { type T <: A }
trait B extends Root { type T <: B }
trait C extends A with B;

Then the trait definition C is not well-formed because the binding of T in C is
type T <: B, which fails to subsume the binding type T <: A of T in type A. The
problem can be solved by adding an overriding definition of type T in class C:

class C extends A with B { type T <: C }

20.1.6 Modifiers

Syntax:

Modifier ::= LocalModifier
| private
| protected
| override

LocalModifier ::= abstract
| final
| sealed

Member definitions may be preceded by modifiers which affect the accessibility
and usage of the identifiers bound by them. If several modifiers are given, their
order does not matter, but the same modifier may not occur repeatedly. Modifiers
preceding a repeated definition apply to all constituent definitions. The rules gov-
erning the validity and meaning of a modifier are as follows.

• The private modifier can be used with any definition in a template. Private
members can be accessed only from within the template that defines them.
Private members are not inherited by subclasses and they may not override
definitions in parent classes. private may not be applied to abstract mem-
bers, and it may not be combined in one modifier list with protected, final
or override.

• The protected modifier applies to class member definitions. Protected mem-
bers can be accessed from within the template of the defining class as well as

188 Classes and Objects

in all templates that have the defining class as a base class. A protected iden-
tifier x may be used as a member name in a selection r.x only if r is one of
the reserved words this and super, or if r ’s type conforms to a type-instance
of the class which contains the access.

• The override modifier applies to class member definitions. It is mandatory
for member definitions that override some other concrete member definition
in a super- or mixin-class. If an override modifier is given, there must be at
least one overridden member definition.

The override modifier has an additional significance when combined with
the abstract modifier. That modifier combination is only allowed for mem-
bers of abstract classes. A member labeled abstract and override must over-
ride some member of the superclass of the class containing the definition.

We call a member of a template incomplete if it is either abstract (i.e. defined
by a declaration), or it is labeled abstract and override and it overrides an
incomplete member of the template’s superclass.

Note that the abstract override modifier combination does not influence
the concept whether a member is concrete or abstract. A member for which
only a declaration is given is abstract, whereas a member for which a full def-
inition is given is concrete.

• The abstract modifier is used in class definitions. It is mandatory if the class
has incomplete members. Abstract classes cannot be instantiated (§21.7) with
a constructor invocation unless followed by mixin constructors or statements
which override all incomplete members of the class.

The abstract modifier can also be used in conjunction with override for
class member definitions. In that case the meaning of the previous discus-
sion applies.

• The final modifier applies to class member definitions and to class defini-
tions. A final class member definition may not be overridden in subclasses.
A final class may not be inherited by a template. final is redundant for ob-
ject definitions. Members of final classes or objects are implicitly also final, so
the final modifier is redundant for them, too. final may not be applied to
incomplete members, and it may not be combined in one modifier list with
private or sealed.

• The sealed modifier applies to class definitions. A sealed class may not be
inherited, except if either

– the inheriting template is nested within the definition of the sealed class
itself, or

– the inheriting template belongs to a class or object definition which
forms part of the same statement sequence as the definition of the sealed
class.

20.1 Templates 189

Example 20.1.4 A useful idiom to prevent clients of a class from constructing new
instances of that class is to declare the class abstract and sealed:

object m {
abstract sealed class C (x: Int) {
def nextC = C(x + 1) {}

}
val empty = new C(0) {}

}

For instance, in the code above clients can create instances of class m.C only by call-
ing the nextC method of an existing m.C object; it is not possible for clients to create
objects of class m.C directly. Indeed the following two lines are both in error:

m.C(0) // **** error: C is abstract, so it cannot be instantiated.
m.C(0) {} // **** error: illegal inheritance from sealed class.

20.1.7 Attributes

Syntax:

AttributeClause ::= ‘[’ Attribute {‘,’ Attribute} ‘]’
Attribute ::= Constr

Attributes associate meta-information with definitions. A simple attribute clause
has the form [C] or [C (a1, . . . , an)]. Here, c is a constructor of a class C , which must
comform to the class scala.Attribute. All given constructor arguments a1, . . . , an

must be constant expressions. An attribute clause applies to the first definition or
declaration following it. More than one attribute clause may precede a definition
and declaration. The order in which these clauses are given does not matter. It is
also possible to combine several attributres separated by commas in one clause.
Such a combined clause [A1, . . . , An] is equivalent to a set of clauses [A1] . . . [An].

The meaning of attribute clauses is implementation-dependent. On the Java plat-
form, the following attributes have a standard meaning.

transient

Marks a field to be non-persistent; this is equivalent to the transient

modifier in Java.

volatile

Marks a field which can change its value outside the control of the pro-
gram; this is equivalent to the volatile modifier in Java.

Serializable

190 Classes and Objects

Marks a class to be serializable; this is equivalent to inheriting from the
java.io.Serializable interface in Java.

SerialVersionUID(<longlit>)

Attaches a serial version identifier (a long constant) to a class. This is
equivalent to a the following field definition in Java:

private final static SerialVersionUID = <longlit>;

20.2 Class Definitions

Syntax:

TmplDef ::= class ClassDef
ClassDef ::= ClassSig {‘,’ ClassSig} [‘:’ SimpleType] ClassTemplate
ClassSig ::= id [TypeParamClause] [ClassParamClause]
ClassTemplate ::= extends Template | TemplateBody |
ClassParamClause ::= ‘(’ [ClassParam {‘,’ ClassParam}] ‘)’
ClassParam ::= [{Modifier} ‘val’] Param

The most general form of class definition is class c[tps](ps): s extends t .
Here,

c is the name of the class to be defined.

tps is a non-empty list of type parameters of the class being defined. The
scope of a type parameter is the whole class definition including the type pa-
rameter section itself. It is illegal to define two type parameters with the same
name. The type parameter section [tps] may be omitted. A class with a type
parameter section is called polymorphic, otherwise it is called monomorphic.

ps is a formal value parameter clause for the primary constructor of the class.
The scope of a formal value parameter includes the template t . However, a
formal value parameter may not form part of the types of any of the parent
classes or members of t . It is illegal to define two formal value parameters
with the same name. The formal parameter section (ps) may be omitted, in
which case an empty parameter section () is assumed.

If a formal parameter declaration x : T is preceded by a val keyword, an acces-
sor definition for this parameter is implicitly added to the class. The accessor
introduces a value member x of c that is defined as alias of the parameter. The
formal paremter declaration may contain modifiers, which then carry over to
the accessor definition.

20.2 Class Definitions 191

s is the self type of the class. Inside the class, the type of this is assumed
to be s. The self type must conform to the self types of all classes which are
inherited by the template t . The self type declaration ‘:s’ may be omitted, in
which case the self type of the class is assumed to be equal to c[tps].

t is a template (§20.1) of the form

sc with mc1 with . . . with mcn { stats } (n ≥ 0)

which defines the base classes, behavior and initial state of objects of the
class. The extends clause extends sc can be omitted, in which case
extends scala.AnyRef is assumed. The class body {stats} may also be omit-
ted, in which case the empty body {} is assumed.

This class definition defines a type c[tps] and a constructor which when applied to
parameters conforming to types ps initializes instances of type c[tps] by evaluating
the template t .

For any index i let csigi be a class signature consisting of a class name and
optional type parameter and value parameter sections. Let ct be a class tem-
plate. Then a class definition class csig1, . . . , csign ct is a shorthand for the se-
quence of class definitions class csig1 ct; ...; class csign ct . A class defini-
tion class csig1, . . . , csign : T ct is a shorthand for the sequence of class defini-
tions class csig1 : T ct; ...; class csign : T ct .

20.2.1 Constructor Definitions

Syntax:

FunDef ::= this ParamClause‘=’ ConstrExpr
ConstrExpr ::= this ArgumentExprs

| ‘{’ this ArgumentExprs {‘;’ BlockStat} ‘}’

A class may have additional constructors besides the primary constructor. These
are defined by constructor definitions of the form def this(ps) = e. Such a def-
inition introduces an additional constructor for the enclosing class, with parame-
ters as given in the formal parameter list ps, and whose evaluation is defined by
the constructor expression e. The scope of each formal parameter is the construc-
tor expression e. A constructor expression is either a self constructor invocation
this(args) or a block which begins with a self constructor invocation. Neither the
signature, nor the self constructor invocation of a constructor definition may refer
to this, or refer to value parameters or members of the enclosing class by simple
name.

If there are auxiliary constructors of a class C , they define together with C ’s primary
constructor an overloaded constructor value. The usual rules for overloading reso-
lution (§19.6) apply for constructor invocations of C , including the self constructor

192 Classes and Objects

invocations in the constructor expressions themselves. To prevent infinite cycles
of constructor invocations, there is the restriction that every self constructor invo-
cation must refer to a constructor definition which precedes it (i.e. it must refer
to either a preceding auxiliary constructor or the primary constructor of the class).
The type of a constructor expression must be always so that a generic instance of
the class is constructed. I.e., if the class in question has name C and type param-
eters [tps], then each constructor must construct an instance of C[tps]; it is not
permitted to instantiate formal type parameters.

Example 20.2.1 Consider the class definition

class LinkedList[a]() {
var head = _;
var tail = null;
def isEmpty = tail != null;
def this(head: a) = { this(); this.head = head; }
def this(head: a, tail: List[a]) = { this(head); this.tail = tail }

}

This defines a class LinkedList with an overloaded constructor of type

[a](): LinkedList[a] 〈and〉
[a](x: a): LinkedList[a] 〈and〉
[a](x: a, xs: LinkedList[a]): LinkedList[a] .

The second constructor alternative constructs an singleton list, while the third one
constructs a list with a given head and tail.

20.2.2 Case Classes

Syntax:

TmplDef ::= case class ClassDef

If a class definition is prefixed with case, the class is said to be a case class. The
primary constructor of a case class may be used in a constructor pattern (§22.1).
The following four restrictions ensure efficient pattern matching for case classes.

1. None of the base classes of a case class may be a case class.

2. No type may have two different case classes among its base types.

3. A case class may not inherit indirectly from a sealed class. That is, if a base
class b of a case class c is marked sealed, then b must be a parent class of c.

4. The primary constructor of a case class may not have any call-by-name pa-
rameters (§19.5).

20.2 Class Definitions 193

A case class definition of c[tps](ps) with type parameters tps and value param-
eters ps implicitly generates a function definition for a case class factory together
with the class definition itself:

def c[tps](ps): s = new c[tps](ps)

(Here, s is the self type of class c. If a type parameter section is missing in the class,
it is also missing in the factory definition).

All formal value parameters of a case class are implicitly prefixed with a val key-
word. Therefore, accessor definitions (§20.2) for such parameters are generated.

Also implicitly defined are accessor member definitions in the class that return its
value parameters. Every binding x : T in the parameter section leads to a value
definition of x that defines x to be an alias of the parameter.

Every case class implicitly overrides some method definitions of class scala.AnyRef
(§27.1) unless a definition of the same method is already given in the case class itself
or a concrete definition of the same method is given in some base class of the case
class different from AnyRef. In particular:

Method equals: (Any)boolean is structural equality, where two instances
are equal if they belong to the same class and have equal (with respect to
equals) primary constructor arguments.

Method hashCode: ()int computes a hash-code depending on the data
structure in a way which maps equal (with respect to equals) values to equal
hash-codes.

Method toString: ()String returns a string representation which contains
the name of the class and its primary constructor arguments.

Example 20.2.2 Here is the definition of abstract syntax for lambda calculus:

class Expr;
case class
Var (x: String) extends Expr,
Apply (f: Expr, e: Expr) extends Expr,
Lambda (x: String, e: Expr) extends Expr;

This defines a class Expr with case classes Var, Apply and Lambda. A call-by-value
evaluator for lambda expressions could then be written as follows.

type Env = String => Value;
case class Value(e: Expr, env: Env);

def eval(e: Expr, env: Env): Value = e match {
case Var (x) =>
env(x)

194 Classes and Objects

case Apply(f, g) =>
val Value(Lambda (x, e1), env1) = eval(f, env);
val v = eval(g, env);
eval (e1, (y => if (y == x) v else env1(y)))

case Lambda(_, _) =>
Value(e, env)

}

It is possible to define further case classes that extend type Expr in other parts of the
program, for instance

case class Number(x: Int) extends Expr;

This form of extensibility can be excluded by declaring the base class Expr sealed;
in this case, the only classes permitted to extend Expr are those which are nested
inside Expr, or which appear in the same statement sequence as the definition of
Expr.

20.3 Traits

Syntax:

TmplDef ::= trait ClassDef

A class definition which starts with the reserved word trait instead of class defines
a trait. A trait is a specific instance of an abstract class, so the abstract modifier is
redundant for it. The trait definition must satisfy the following four restrictions.

1. There are no value parameters in the trait’s primary constructor, nor are there
secondary constructors.

2. All mixin base classes of the trait are traits.

3. All parent class constructors of the trait are primary constructors with empty
value parameter lists.

4. All non-empty statements in the trait’s template are either imports or pure
definitions.

A pure definition can be evaluated without any side effect. Function, type, class, or
object definitions are always pure. A value definition is pure if its right-hand side
expression is pure. A secondary constructor definition is pure if its right-hand side
consists only Pure expressions are paths, literals, and typed expressions e : T where
e is pure.

These restrictions ensure that the evaluation of the mixin constructor of a trait has
no effect. Therefore, traits may appear several times in the base classes of a tem-
plate, whereas other classes cannot.

20.4 Object Definitions 195

Example 20.3.1 The following trait class defines the property of being ordered, i.e.
comparable to objects of some type. It contains an abstract method < and default
implementations of the other comparison operators <=, >, and >=.

trait Ord[t <: Ord[t]]: t {
def < (that: t): Boolean;
def <=(that: t): Boolean = this < that || this == that;
def > (that: t): Boolean = that < this;
def >=(that: t): Boolean = that <= this;

}

20.4 Object Definitions

Syntax:

ObjectDef ::= id {‘,’ id} [‘:’ SimpleType] ClassTemplate

An object definition defines a single object of a new class. Its most general form is
object m: s extends t . Here,

m is the name of the object to be defined.

s is the self type of the object. References to m are assumed to have type s.
Furthermore, inside the template t , the type of this is also assumed to be s.
The type of the anonymous class defined by t must conform to s and s must
conform to the self types of all classes which are inherited by t . The self type
declaration ‘: s’ may be omitted, in which case the self type is assumed to be
equal to the anonymous class defined by t .

t is a template (§20.1) of the form

sc with mc1 with . . . with mcn { stats }

which defines the base classes, behavior and initial state of m. The extends
clause extends sc can be omitted, in which case extends scala.AnyRef is
assumed. The class body {stats} may also be omitted, in which case the
empty body {} is assumed.

The object definition defines a single object (or: module) conforming to the tem-
plate t . It is roughly equivalent to a class definition and a value definition that cre-
ates an object of the class:

final class m$cls: s extends t;
final val m: s = new m$cls;

(The final modifiers are omitted if the definition occurs as part of a block. The
class name m$cls is not accessible for user programs.)

196 Classes and Objects

There are however two differences between an object definition and a pair of class
and value definitions such as the one given above. First, object definitions may
appear as top-level definitions in a compilation unit, whereas value definitions may
not. Second, the module defined by an object definition is instantiated lazily. The
new m$cls constructor is evaluated not at the point of the object definition, but is
instead evaluated the first time m is dereferenced during execution of the program
(which might be never at all). An attempt to dereference m again in the course
of evaluation of the constructor leads to a infinite loop or run-time error. Other
threads trying to dereference m while the constructor is being evaluated block until
evaluation is complete.

Example 20.4.1 Classes in Scala do not have static members; however, an equiva-
lent effect can be achieved by an accompanying object definition E.g.

abstract class Point {
val x: Double;
val y: Double;
def isOrigin = (x == 0.0 && y == 0.0);

}
object Point {
val origin = new Point() { val x = 0.0; val y = 0.0 }

}

This defines a class Point and an object Point which contains origin as a member.
Note that the double use of the name Point is legal, since the class definition defines
the name Point in the type name space, whereas the object definition defines a
name in the term namespace.

This technique is applied by the Scala compiler when interpreting a Java class with
static members. Such a class C is conceptually seen as a pair of a Scala class that
contains all instance members of C and a Scala object that contains all static mem-
bers of C .

Let ct be a class template. Then an object definition
object x1, . . . , xn ct is a shorthand for the sequence of object def-
initions object x1 ct; ...; object xn ct . An object definition
object x1, . . . , xn : T ct is a shorthand for the sequence of object definitions
object x1 : T ct; ...; object xn : T ct .

Chapter 21

Expressions

Syntax:

Expr ::= [Bindings ‘=>’] Expr
| Expr1

Expr1 ::= if ‘(’ Expr ‘)’ Expr [[‘;’] else Expr]
| try ‘{’ block ‘}’ [catch Expr] [finally Expr]
| while ’(’ Expr ’)’ Expr
| do Expr [‘;’] while ‘(’ Expr ’)’
| for ‘(’ Enumerators ‘)’ (do | yield) Expr
| return [Expr]
| throw Expr
| [SimpleExpr ‘.’] id ‘=’ Expr
| SimpleExpr ArgumentExprs ‘=’ Expr
| PostfixExpr [‘:’ Type1]
| MethodClosure

PostfixExpr ::= InfixExpr [id]
InfixExpr ::= PrefixExpr

| InfixExpr id PrefixExpr
PrefixExpr ::= [‘-’ | ‘+’ | ‘~’ | ‘!’] SimpleExpr
SimpleExpr ::= Literal

| Path
| ‘(’ [Expr] ‘)’
| BlockExpr
| new Template
| SimpleExpr ‘.’ id
| SimpleExpr TypeArgs
| SimpleExpr ArgumentExprs
| XmlExpr

ArgumentExprs ::= ‘(’ [Exprs] ’)’
| BlockExpr

MethodClosure ::= ‘.’ Id {‘.’ Id | TypeArgs | ArgumentExprs}

198 Expressions

BlockExpr ::= ‘{’ CaseClause {CaseClause} ‘}’
| ‘{’ Block ‘}’

Block ::= {BlockStat ‘;’} [ResultExpr]
ResultExpr ::= Expr1

| Bindings ‘=>’ Block
Exprs ::= Expr {‘,’ Expr}

Expressions are composed of operators and operands. Expression forms are dis-
cussed subsequently in decreasing order of precedence.

The typing of expressions is often relative to some expected type. When we write
“expression e is expected to conform to type T ”, we mean: (1) the expected type of
e is T , and (2) the type of expression e must conform to T .

21.1 Literals

Syntax:

SimpleExpr ::= Literal
Literal ::= intLit

| floatLit
| charLit
| stringLit
| symbolLit
| true
| false
| null

Typing and evaluation of numeric, character, and string literals are generally as in
Java. An integer literal denotes an integer number. Its type is normally int. How-
ever, if the expected type pt of the expression is either byte, short, or char and the
integer number fits in the numeric range defined by the type, then the number is
converted to type pt and the expression’s type is pt. A floating point literal denotes a
single-precision or double precision IEEE floating point number. A character literal
denotes a Unicode character. A string literal denotes a member of String.

A symbol literal ’x is a shorthand for the expression scala.Symbol("x"). If the
symbol literal is followed by actual parameters, as in ’x(args), then the whole ex-
pression is taken to be a shorthand for scala.Symbol("x", args).

The boolean truth values are denoted by the reserved words true and false. The
type of these expressions is boolean, and their evaluation is immediate.

The null literal is of type scala.AllRef. It denotes a reference value which refers to
a special “null’ object, which implements methods in class scala.AnyRef as follows:

• eq(x), ==(x), equals(x) return true iff their argument x is also the “null”

21.2 Designators 199

object.

• isInstanceOf[T] always returns false.

• asInstanceOf[T] returns the “null” object itself if T conforms to
scala.AnyRef, and throws a NullPointerException otherwise.

• toString() returns the string “null”.

A reference to any other member of the “null” object causes a
NullPointerException to be thrown.

21.2 Designators

Syntax:

Designator ::= Path
| SimpleExpr ‘.’ id

A designator refers to a named term. It can be a simple name or a selection. If r is
a stable identifier of type T , the selection r.x refers to the term member of r that
is identified in T by the name x. For other expressions e, e.x is typed as if it was
(val y = e ; y.x) for some fresh name y . The typing rules for blocks implies that in
that case x’s type may not refer to any abstract type member of e.

The expected type of a designator’s prefix is always missing. The type of a designator
is normally the type of the entity it refers to. However, if the designator is a path
(§18.1) p, its type is p.type, provided the expression’s expected type is a singleton
type, or p occurs as the prefix of a selection or type selection.

The selection e.x is evaluated by first evaluating the qualifier expression e. The se-
lection’s result is then the value to which the selector identifier is bound in the object
resulting from evaluation of e.

21.3 This and Super

Syntax:

SimpleExpr ::= [id ‘.’] this
| [id ‘.’] super [‘[’ id ‘]’] ‘.’ id

The expression this can appear in the statement part of a template or compound
type. It stands for the object being defined by the innermost template or compound
type enclosing the reference. If this is a compound type, the type of this is that
compound type. If it is a template of an instance creation expression, the type of
this is the type of that template. If it is a template of a class or object definition
with simple name C , the type of this is the same as the type of C.this.

200 Expressions

The expression C.this is legal in the statement part of an enclosing class or object
definition with simple name C . It stands for the object being defined by the inner-
most such definition. If the expression’s expected type is a singleton type, or C.this
occurs as the prefix of a selection, its type is C.this.type, otherwise it is the self
type of class C .

A reference super.m in a template refers to the definition of m in the actual su-
perclass (§20.1.2) of the template. A reference C.super.m refers to the definition
of m in the actual superclass of the innermost enclosing class or object definition
named C which encloses the reference. The definition m referred to via super or
C.super must be concrete, or the template containing the reference must have an
incomplete (§20.1.6) member m′ which overrides m.

The super prefix may be followed by a mixin qualifier [M], as in C.super[M].x.
This is called a mixin super reference. In this case, the reference is to the member of
x in the (first) mixin class of C whose simple name is M . That member may not be
abstract.

Example 21.3.1 Consider the following class definitions

class Root { val x = "Root" }
class A extends Root { override val x = "A" ; val superA = super.x }
class B extends Root { override val x = "B" ; val superB = super.x }
class C extends A with B {
override val x = "C" ; val superC = super.x

}
class D extends A { val superD = super.x }
class E extends C with D { val superE = super.x }

Then we have:

(new A).superA == "Root", (new B).superB == "Root"
(new C).superA == "Root", (new C).superB == "A", (new C).superC == "A"
(new D).superA == "Root", (new D).superD == "A"
(new E).superA == "Root", (new E).superB == "A", (new E).superC == "A",

(new E).superD == "C", (new E).superE == "C"

Note that the superB function returns different results depending on whether B is
used as defining class or as a mixin class.

Example 21.3.2 Consider the following class definitions:

class Shape {
override def equals(other: Any) = . . .;
. . .

}
trait Bordered extends Shape {
val thickness: int;

21.4 Function Applications 201

override def equals(other: Any) = other match {
case that: Bordered =>
super equals other && this.thickness == that.thickness

case _ => false
}
. . .

}
trait Colored extends Shape {
val color: Color;
override def equals(other: Any) = other match {
case that: Colored =>
super equals other && this.color == that.color

case _ => false
}
. . .

}

Both definitions of equals are combined in the class below.

trait BorderedColoredShape extends Shape with Bordered with Colored {
override def equals(other: Any) =
super[Bordered].equals(that) && super[Colored].equals(that)

}

21.4 Function Applications

Syntax:

SimpleExpr ::= SimpleExpr ArgumentExprs

An application f (e1, . . . , en) applies the function f to the argument expressions
e1, . . . , en . If f has a method type (T1, . . . , Tn)U, the type of each argument expres-
sion ei must conform to the corresponding parameter type Ti . If f has some value
type, the application is taken to be equivalent to f .apply(e1, . . . , en), i.e. the appli-
cation of an apply method defined by f .

Evaluation of f (e1, . . . , en) usually entails evaluation of f and e1, . . . , en in that or-
der. Each argument expression is converted to the type of its corresponding formal
parameter. After that, the application is rewritten to the function’s right hand side,
with actual arguments substituted for formal parameters. The result of evaluating
the rewritten right-hand side is finally converted to the function’s declared result
type, if one is given.

The case of a formal parameter with a parameterless method type => T is treated
specially. In this case, the corresponding actual argument expression is not eval-

202 Expressions

uated before the application. Instead, every use of the formal parameter on the
right-hand side of the rewrite rule entails a re-evaluation of the actual argument ex-
pression. In other words, the evaluation order for def-parameters is call-by-name
whereas the evaluation order for normal parameters is call-by-value.

21.5 Type Applications

Syntax:

SimpleExpr ::= SimpleExpr ‘[’ Types ‘]’

A type application e[T1, . . . , Tn] instantiates a polymorphic value e of type
[a1 >: L1 <: U1, . . . , an >: Ln <: Un]S with argument types T1, . . . , Tn . Every
argument type Ti must obey corresponding bounds Li and Ui . That is, for each
i = 1, . . . , n, we must have Liσ <: Ti <: Uiσ, where σ is the substitution [a1 :=
T1, . . . , an := Tn]. The type of the application is Sσ.

The function part e may also have some value type. In this case the type application
is taken to be equivalent to e.apply[T1, . . . , Tn], i.e. the application of an apply

method defined by e.

Type applications can be omitted if local type inference (§25) can infer best type
parameters for a polymorphic functions from the types of the actual function argu-
ments and the expected result type.

21.6 References to Overloaded Bindings

If a name f referenced in an identifier or selection is overloaded (§19.6), the context
of the reference has to identify a unique alternative of the overloaded binding. The
way this is done depends on whether or not f is used as a function. Let A be the set
of all type alternatives of f .

Assume first that f appears as a function in an application, as in f (args). If there
is precisely one alternative in A which is a (possibly polymorphic) method type
whose arity matches the number of arguments given, that alternative is chosen.

Otherwise, let Ts be the vector of types obtained by typing each argument with a
missing expected type. One determines first the set of applicable alternatives. A
method type alternative is applicable if each type in Ts is compatible with the cor-
responding formal parameter type in the alternative, and, if the expected type is
defined, the method’s result type is compatible to it. A polymorphic method type is
applicable if local type inference can determine type arguments so that the instan-
tiated method type is applicable.

Here, a type T is compatible to a type U if T conforms to U after applying implicit
conversions (§18.7).

21.6 References to Overloaded Bindings 203

Let B be the set of applicable alternatives. It is an error if B is empty. Otherwise,
one chooses the most specific alternative among the alternatives in B, according to
the following definition of being “more specific”.

• A method type (Ts)U is more specific than some other type S if S is applicable
to arguments (ps) of types Ts.

• A polymorphic method type [a1 >: L1 <: U1, . . . , an >: Ln <: Un]T is
more specific than some other type S if T is more specific than S under the
assumption that for i = 1, . . . , n each ai is an abstract type name bounded
from below by Li and from above by Ui .

• Any other type is always more specific than a parameterized method type or
a polymorphic type.

It is an error if there is no unique alternative in B which is more specific than all
other alternatives in B.

Assume next that f appears as a function in a type application, as in f [targs]. Then
we choose an alternative in A which takes the same number of type parameters as
there are type arguments in targs. It is an error if no such alternative exists, or if it is
not unique.

Assume finally that f does not appear as a function in either an application or a
type application. If an expected type is given, let B be the set of those alternatives
in A which are compatible to it. Otherwise, let B be the same as A . We choose in
this case the most specific alternative among all alternatives in B. It is an error if
there is no unique alternative in B which is more specific than all other alternatives
in B.

Example 21.6.1 Consider the following definitions:

class A extends B {}
def f(x: B, y: B) = . . .
def f(x: A, y: B) = . . .
val a: A;
val b: B

Then the application f(b, b) refers to the first definition of f whereas the applica-
tion f(a, a) refers to the second. Assume now we add a third overloaded definition

def f(x: B, y: A) = . . .

Then the application f(a, a) is rejected for being ambiguous, since no most spe-
cific applicable signature exists.

204 Expressions

21.7 Instance Creation Expressions

Syntax:

SimpleExpr ::= new Template

A simple instance creation expression is of the form new c where c is a constructor
invocation (§20.1.1). Let T be the type of c. Then T must denote a (a type instance
of) a non-abstract subclass of scala.AnyRef which conforms to its self type (§20.2).
The expression is evaluated by creating a fresh object of type T which is is initialized
by evaluating c. The type of the expression is T ’s self type (which might be less
specific than T).

A general instance creation expression is of the form

new sc with mc1 with . . . with mcn {stats}

where n ≥ 0, sc as well as mc1, . . . , mcn are constructor invocations (of types
S,T1, . . . , Tn , say) and stats is a statement sequence containing initializer statements
and member definitions (§20.1.4). The type of such an instance creation expression
is then the compound type S with T1 with . . . with Tn {R }, where {R } is a re-
finement (§18.2.5) which declares exactly those members of stats that override a
member of S or T1, . . . , Tn . For this type to be well-formed, R may not reference
types defined in stats which do not themselves form part of R.

The instance creation expression is evaluated by creating a fresh object, which is
initialized by evaluating the expression template.

Example 21.7.1 Consider the class

abstract class C {
type T; val x: T; def f(x: T): AnyRef

}

and the instance creation expression

C { type T = Int; val x: T = 1; def f(x: T): T = y; val y: T = 2 }

Then the created object’s type is:

C { type T = Int; val x: T; def f(x: T): T }

The value y is missing from the type, since y does not override a member of C .

21.8 Blocks

Syntax:

21.9 Prefix, Infix, and Postfix Operations 205

BlockExpr ::= ‘{’ Block ‘}’
Block ::= [{BlockStat ‘;’} ResultExpr]

A block expression {s1; . . .; sn; e } is constructed from a sequence of block state-
ments s1, . . . , sn and a final expression e. The final expression can be omitted, in
which case the unit value () is assumed.

The expected type of the final expression e is the expected type of the block. The
expected type of all preceding statements is missing.

The type of a block s1; . . .; sn; e is usually the type of e. That type must be equiv-
alent to a type which does not refer to an entity defined locally in the block. If this
condition is violated, but a fully defined expected type is given, the type of the block
is instead assumed to be the expected type.

Evaluation of the block entails evaluation of its statement sequence, followed by an
evaluation of the final expression e, which defines the result of the block.

Example 21.8.1 Written in isolation, the block

{ class C extends B {. . .} ; new C }

is illegal, since its type refers to class C , which is defined locally in the block.

However, when used in a definition such as

val x: B = { class C extends B {. . .} ; new C }

the block is well-formed, since the problematic type C can be replaced by the ex-
pected type B.

21.9 Prefix, Infix, and Postfix Operations

Syntax:

PostfixExpr ::= InfixExpr [id]
InfixExpr ::= PrefixExpr

| InfixExpr id PrefixExpr
PrefixExpr ::= [‘-’ | ‘+’ | ‘!’ | ‘~’] SimpleExpr

Expressions can be constructed from operands and operators. A prefix operation
op e consists of a prefix operator op, which must be one of the identifiers ‘+’, ‘-’, ‘!’,
or ‘~’, and a simple expression e. The expression is equivalent to the postfix method
application e.op.

Prefix operators are different from normal function applications in that their
operand expression need not be atomic. For instance, the input sequence -sin(x)

is read as -(sin(x)), whereas the function application negate sin(x) would be

206 Expressions

parsed as the application of the infix operator sin to the operands negate and (x).

An infix or postfix operator can be an arbitrary identifier. Infix operators have prece-
dence and associativity defined as follows:

The precedence of an infix operator is determined by the operator’s first character.
Characters are listed below in increasing order of precedence, with characters on
the same line having the same precedence.

(all letters)
|
^
&
< >
= !
:
+ -

* / %
(all other special characters)

That is, operators starting with a letter have lowest precedence, followed by opera-
tors starting with ‘|’, etc.

The associativity of an operator is determined by the operator’s last character. Op-
erators ending with a colon ‘:’ are right-associative. All other operators are left-
associative.

Precedence and associativity of operators determine the grouping of parts of an ex-
pression as follows.

• If there are several infix operations in an expression, then operators with
higher precedence bind more closely than operators with lower precedence.

• If there are consecutive infix operations e0 op1 e1 op2 . . .opn en with operators
op1, . . . , opn of the same precedence, then all these operators must have the
same associativity. If all operators are left-associative, the sequence is inter-
preted as (. . . (e0 op1 e1) op2 . . .) opn en . Otherwise, if all operators are right-
associative, the sequence is interpreted as e0 op1 (e1 op2 (. . .opn en) . . .).

• Postfix operators always have lower precedence than infix operators. E.g.
e1 op1 e2 op2 is always equivalent to (e1 op1 e2) op2.

A postfix operation e op is interpreted as e.op. A left-associative binary operation
e1 op e2 is interpreted as e1.op(e2). If op is right-associative, the same operation is
interpreted as (val x=e1; e2.op(x)), where x is a fresh name.

21.10 Typed Expressions

Syntax:

21.11 Method closures 207

Expr1 ::= PostfixExpr [‘:’ Type1]

The typed expression e : T has type T . The type of expression e is expected to con-
form to T . The result of the expression is the value of e converted to type T .

Example 21.10.1 Here are examples of well-typed and illegally typed expressions.

1: int // legal, of type int
1: long // legal, of type long
// 1: string // illegal

21.11 Method closures

Syntax:

MethodClosure ::= ‘.’ Id {‘.’ Id | TypeArgs | ArgumentExprs}

A method closure .i d starts with a period and an identifier, which may be followed
by selections and type- and value-arguments. This expression is equivalenet to an
anonymous function x => x.i d where x is a fresh parameter name. No type for x is
given; hence this type needs to be inferrable from the context of the expression.

Example 21.11.1 The following method returns the n’th column of a given list of
row-lists xss, using methods map, drop and head defined in class scala.List.

def column[T](xss: List[List[T]], n: int): List[T] =
xss.map(.drop(i)).map(.head)

21.12 Assignments

Syntax:

Expr1 ::= Designator ‘=’ Expr
| SimpleExpr ArgumentExprs ‘=’ Expr

The interpretation of an assignment to a simple variable x = e depends on the
definition of x. If x denotes a mutable variable, then the assignment changes the
current value of x to be the result of evaluating the expression e. The type of e is
expected to conform to the type of x. If x is a parameterless function defined in
some template, and the same template contains a setter function x_= as member,
then the assignment x = e is interpreted as the invocation x_=(e) of that setter
function. Analogously, an assignment f .x = e to a parameterless function x is
interpreted as the invocation f .x_=(e).

208 Expressions

An assignment f (args) = e with a function application to the left of the “=’ oper-
ator is interpreted as f .update(args, e), i.e. the invocation of an update function
defined by f .

Example 21.12.1 Here is the usual imperative code for matrix multiplication.

def matmul(xss: Array[Array[double]], yss: Array[Array[double]]) = {
val zss: Array[Array[double]] = new Array(xss.length, yss.length);
var i = 0;
while (i < xss.length) {
var j = 0;
while (j < yss(0).length) {
var acc = 0.0;
var k = 0;
while (k < yss.length) {
acc = acc + xs(i)(k) * yss(k)(j);
k = k + 1

}
zss(i)(j) = acc;
j = j + 1

}
i = i + 1

}
zss

}

Desugaring the array accesses and assignments yields the following expanded ver-
sion:

def matmul(xss: Array[Array[double]], yss: Array[Array[double]]) = {
val zss: Array[Array[double]] = new Array(xss.length, yss.length);
var i = 0;
while (i < xss.length) {
var j = 0;
while (j < yss(0).length) {
var acc = 0.0;
var k = 0;
while (k < yss.length) {
acc = acc + xss.apply(i).apply(k) * yss.apply(k).apply(j);
k = k + 1

}
zss.apply(i).update(j, acc);
j = j + 1

}
i = i + 1

}
zss

21.13 Conditional Expressions 209

}

21.13 Conditional Expressions

Syntax:

Expr1 ::= if ‘(’ Expr ‘)’ Expr [[‘;’] else Expr]

The conditional expression if (e1) e2 else e3 chooses one of the values of e2 and
e3, depending on the value of e1. The condition e1 is expected to conform to type
boolean. The then-part e2 and the else-part e3 are both expected to conform to the
expected type of the conditional expression. The type of the conditional expression
is the least upper bound of the types of e1 and e2. A semicolon preceding the else
symbol of a conditional expression is ignored.

The conditional expression is evaluated by evaluating first e1. If this evaluates to
true, the result of evaluating e2 is returned, otherwise the result of evaluating e3 is
returned.

A short form of the conditional expression eliminates the else-part. The conditional
expression if (e1) e2 is evaluated as if it was if (e1) e2 else (). The type of this
expression is unit and the then-part e2 is also expected to conform to type unit.

21.14 While Loop Expressions

Syntax:

Expr1 ::= while ‘(’ Expr ’)’ Expr

The while loop expression while (e1) e2 is typed and evaluated as if it was an
application of whileLoop (e1) (e2) where the hypothetical function whileLoop is
defined as follows.

def whileLoop(def c: boolean)(def s: unit): unit =
if (c) { s ; while(c)(s) } else {}

Example 21.14.1 The loop

while (x != 0) { y = y + 1/x ; x = x - 1 }

Is equivalent to the application

whileLoop (x != 0) { y = y + 1/x ; x = x - 1 }

210 Expressions

Note that this application will never produce a division-by-zero error at run-time,
since the expression (y = 1/x) will be evaluated in the body of while only if the
condition parameter is false.

21.15 Do Loop Expressions

Syntax:

Expr1 ::= do Expr [‘;’] while ‘(’ Expr ’)’

The do loop expression do e1 while (e2) is typed and evaluated as if it was the
expression (e1 ; while (e2) e1). A semicolon preceding the while symbol of a do
loop expression is ignored.

21.16 Comprehensions

Syntax:

Expr1 ::= for ‘(’ Enumerators ‘)’ [yield] Expr
Enumerator ::= Generator {‘;’ Enumerator}
Enumerator ::= Generator

| Expr
Generator ::= val Pattern1 ‘<-’ Expr

A comprehension for (enums) yield e evaluates expression e for each binding
generated by the enumerators enums. Enumerators start with a generator, which
can be followed by further generators or filters. A generator val p <- e produces
bindings from an expression e which is matched in some way against pattern p. A
filter is an expressions which restricts enumerated bindings. The precise meaning
of generators and filters is defined by translation to invocations of four methods:
map, filter, flatMap, and foreach. These methods can be implemented in different
ways for different carrier types.

The translation scheme is as follows. In a first step, every generator val p <- e,
where p is not a pattern variable, is replaced by

val p <- e.filter { case p => true; case _ => false }

Then, the following rules are applied repeatedly until all comprehensions have been
eliminated.

• A generator val p <- e followed by a filter f is translated to a single gener-
ator val p <- e.filter(x1, . . . , xn => f) where x1, . . . , xn are the free vari-
ables of p.

21.16 Comprehensions 211

• A for-comprehension for (val p <- e) yield e ′ is translated to
e.map { case p => e ′ }.

• A for-comprehension for (val p <- e) e ′ is translated to
e.foreach { case p => e ′ }.

• A for-comprehension

for (val p <- e; val p′ <- e ′ . . .) yield e ′′ ,

where . . . is a (possibly empty) sequence of generators or filters, is translated
to

e.flatmap { case p => for (val p′ <- e ′ . . .) yield e ′′ } .

• A for-comprehension

for (val p <- e; val p′ <- e ′ . . .) e ′′ .

where . . . is a (possibly empty) sequence of generators or filters, is translated
to

e.foreach { case p => for (val p′ <- e ′ . . .) e ′′ } .

Example 21.16.1 the following code produces all pairs of numbers between 1 and
n −1 whose sums are prime.

for { val i <- range(1, n);
val j <- range(1, i);
isPrime(i+j)

} yield Pair (i, j)

The for-comprehension is translated to:

range(1, n)
.flatMap {

case i => range(1, i)
.filter { j => isPrime(i+j) }
.map { case j => Pair(i, j) } }

Example 21.16.2 For comprehensions can be used to express vector and matrix al-
gorithms concisely. For instance, here is a function to compute the transpose of a
given matrix:

def transpose[a](xss: Array[Array[a]]) {
for (val i <- Array.range(0, xss(0).length)) yield
Array(for (val xs <- xss) yield xs(i))

212 Expressions

Here is a function to compute the scalar product of two vectors:

def scalprod(xs: Array[double], ys: Array[double]) {
var acc = 0.0;
for (val Pair(x, y) <- xs zip ys) acc = acc + x * y;
acc

}

Finally, here is a function to compute the product of two matrices. Compare with
the imperative version of Example 21.12.1.

def matmul(xss: Array[Array[double]], yss: Array[Array[double]]) = {
val ysst = transpose(yss);
for (val xs <- xs) yield
for (val yst <- ysst) yield
scalprod(xs, yst)

}

The code above makes use of the fact that map, flatmap, filter, and foreach are
defined for members of class scala.Array.

21.17 Return Expressions

Syntax:

Expr1 ::= return [Expr]

A return expression return e must occur inside the body of some enclosing named
method or function f . This function must have an explicitly declared result type,
and the type of e must conform to it. The return expression evaluates the expres-
sion e and returns its value as the result of f . The evaluation of any statements or
expressions following the return expression is omitted. The type of a return expres-
sion is scala.All.

21.18 Throw Expressions

Syntax:

Expr1 ::= throw Expr

A throw expression throw e evaluates the expression e. The type of this expression
must conform to Throwable. If e evaluates to an exception reference, evaluation
is aborted with the thrown exception. If e evaluates to null, evaluation is instead
aborted with a NullPointerException. If there is an active try expression (§21.19)

21.19 Try Expressions 213

which handles the thrown exception, evaluation resumes with the handler; other-
wise the thread executing the throw is aborted. The type of a throw expression is
scala.All.

21.19 Try Expressions

Syntax:

Expr1 ::= try ‘{’ Block ‘}’ [catch Expr] [finally Expr]

A try expression try { b } catch e evaluates the block b. If evaluation of b does
not cause an exception to be thrown, the result of b is returned. Otherwise the han-
dler e is applied to the thrown exception. Let pt be the expected type of the try
expression. The block b is expected to conform to pt. The handler e is expected
conform to type scala.PartialFunction[scala.Throwable, pt]. The type of the
try expression is the least upper bound of the type of b and the result type of e.

A try expression try { b } finally e evaluates the block b. If evaluation of b
does not cause an exception to be thrown, the expression e is evaluated. If an excep-
tion is thrown during evaluation of e, the evaluation of the try expression is aborted
with the thrown exception. If no exception is thrown during evaluation of e, the
result of b is returned as the result of the try expression.

If an exception is thrown during evaluation of b, the finally block e is also evalu-
ated. If another exception e is thrown during evaluation of e, evaluation of the try
expression is aborted with the thrown exception. If no exception is thrown during
evaluation of e, the original exception thrown in b is re-thrown once evaluation of
e has completed. The block b is expected to conform to the expected type of the try
expression. The finally expression e is expected to conform to type unit.

A try expression try { b } catch e1 finally e2 is a shorthand for
try { try { b } catch e1 } finally e2.

21.20 Anonymous Functions

Syntax:

Expr1 ::= Bindings ‘=>’ Expr
ResultExpr ::= Bindings ‘=>’ Block
Bindings ::= ‘(’ Binding {‘,’ Binding ‘)’

| id [‘:’ Type1]
Binding ::= id [‘:’ Type]

The anonymous function (x1: T1, . . . , xn: Tn) => e maps parameters xi of types
Ti to a result given by expression e. The scope of each formal parameter xi is e.

214 Expressions

Formal parameters must have pairwise distinct names.

If the expected type of the anonymous function is of the form
scala.Functionn[S1, . . . , Sn, R], the expected type of e is R and the type Ti

of any of the parameters xi can be omitted, in which case Ti = Si is assumed. If the
expected type of the anonymous function is some other type, all formal parameter
types must be explicitly given, and the expected type of e is missing. The type of the
anonymous function is scala.Functionn[S1, . . . , Sn, T], where T is the type of e.
T must be equivalent to a type which does not refer to any of the formal parameters
xi .

The anonymous function is evaluated as the instance creation expression

scala.Functionn[T1, . . . , Tn, T] {
def apply(x1: T1, . . . , xn: Tn): T = e

}

In the case of a single formal parameter, (x: T) => e and (x) => e can be ab-
breviated to x: T => e, and x => e, respectively.

Example 21.20.1 Examples of anonymous functions:

x => x // The identity function

f => g => x => f(g(x)) // Curried function composition

(x: Int,y: Int) => x + y // A summation function

() => { count = count + 1; count } // The function which takes an
// empty parameter list (),
// increments a non-local variable
// ‘count’ and returns the new value.

21.21 Statements

Syntax:

BlockStat ::= Import
| Def
| {LocalModifier} TmplDef
| Expr
|

TemplateStat ::= Import
| {AttributeClause} {Modifier} Def
| {AttributeClause} {Modifier} Dcl
| Expr

21.21 Statements 215

|

Statements occur as parts of blocks and templates. A statement can be an import,
a definition or an expression, or it can be empty. Statements used in the template
of a class definition can also be declarations. An expression that is used as a state-
ment can have an arbitrary value type. An expression statement e is evaluated by
evaluating e and discarding the result of the evaluation.

Block statements may be definitions which bind local names in the block. The
only modifiers allowed in block-local definitions are modifiers abstract, final, or
sealed preceding a class or object definition.

With the exception of overloaded definitions (§19.6), a statement sequence making
up a block or template may not contain two definitions or declarations that bind
the same name in the same namespace. Evaluation of a statement sequence entails
evaluation of the statements in the order they are written.

Chapter 22

Pattern Matching

22.1 Patterns

Syntax:

Pattern ::= SimplePattern {Id SimplePattern}

| varid ‘:’ Type

| ‘_’ ‘:’ Type

SimplePattern ::= varid

| ‘_’

| literal

| StableId {‘(’ [Patterns] ‘)’}

| XmlPattern

Patterns ::= Pattern {‘,’ Pattern}

For clarity, this section deals with a subset of the Scala pattern language. The ex-
tended Scala pattern language, which is described below, adds more flexible vari-
able binding and regular hedge expressions.

A pattern is built from constants, constructors, and variables. Pattern matching
tests whether a given value has the shape defined by a pattern, and, if it does, binds
the variables in the pattern to the corresponding components of the value. The
same variable name may not be bound more than once in a pattern.

A pattern is built from constants, constructors, variables and regular operators. Pat-
tern matching tests whether a given value (or sequence of values) has the shape
defined by a pattern, and, if it does, binds the variables in the pattern to the corre-
sponding components of the value (or sequence of values). The same variable name
may not be bound more than once in a pattern.

Pattern matching is always done in a context which supplies an expected type of the
pattern. We distinguish the following kinds of patterns.

218 Pattern Matching

A variable pattern x is a simple identifier which starts with a lower case letter. It
matches any value, and binds the variable name to that value. The type of x is the
expected type of the pattern as given from outside. A special case is the wild-card
pattern _ which is treated as if it was a fresh variable.

A typed pattern x : T consists of a pattern variable x and a simple type T . The type T
may be a class type or a compound type; it may not contain a refinement (§18.2.5).
This pattern matches any value of type T and binds the variable name to that value.
T must conform to the pattern’s expected type. The type of x is T .

A pattern literal l matches any value that is equal (in terms of ==) to it. It’s type
must conform to the expected type of the pattern.

A named pattern constant r is a stable identifier (§18.1). To resolve the syntactic
overlap with a variable pattern, a named pattern constant may not be a simple name
starting with a lower-case letter. The type of r must conform to the expected type of
the pattern. The pattern matches any value v such that r == v (§27.1).

A constructor pattern c(p1) . . . (pn) where n ≥ 0 consists of an identifier c, followed
by component patterns p1, . . . , pn . The constructor c is either a simple name or a
qualified name r.i d where r is a stable identifier. It refers to a (possibly overloaded)
function which has one alternative of result type class C, and which may not have
other overloaded alternatives with a class constructor type as result type. Further-
more, the respective type parameters and value parameters of (said alternative of) c
and of the primary constructor function of class C must be the same, after renaming
corresponding type parameter names. If C is monomorphic, then C must conform
to the expected type of the pattern, and the formal parameter types of C ’s primary
constructor are taken as the expected types of the component patterns p1, . . . , pn .
If C is polymorphic, then there must be a unique type application instance of it
such that the instantiation of C conforms to the expected type of the pattern. The
instantiated formal parameter types of C ’s primary constructor are then taken as
the expected types of the component patterns p1, . . . , pn . The pattern matches all
objects created from constructor invocations c(v1) . . . (vn) where each component
pattern pi matches the corresponding value vi .

An infix operation pattern p id p’ is a shorthand for the constructor pattern
id_class(p)(p’). The precedence and associativity of operators in patterns is the
same as in expressions (§21.9).

Example 22.1.1 Some examples of patterns are:

1. The pattern ex: IOException matches all instances of class IOException,
binding variable ex to the instance.

2. The pattern (x, _) matches pairs of values, binding x to the first component
of the pair. The second component is matched with a wildcard pattern.

3. The pattern x :: y :: xs matches lists of length ≥ 2, binding x to the lists’s
first element, y to the list’s second element, and xs to the remainder.

22.1 Patterns 219

22.1.1 Regular Pattern Matching

Syntax:

Pattern ::= Pattern1 { ‘|’ Pattern1 }
Pattern1 ::= varid ‘:’ Type

| ‘_’ ‘:’ Type
| Pattern2

Pattern2 ::= [varid ‘@’] Pattern3
Pattern3 ::= SimplePattern [’*’ | ’?’ | ’+’]

| SimplePattern { id’ SimplePattern }
SimplePattern ::= ‘_’

| varid
| Literal
| StableId [‘(’ [Patterns] ‘)’]
| ‘(’ [Patterns] ‘)’

Patterns ::= Pattern {‘,’ Pattern}
id’ ::= id but not ’*’ | ’?’ | ’+’ | ‘@’ | ‘|’

We distinguish between tree patterns and hedge patterns (hedges are ordered se-
quences of trees). A tree pattern describes a set of matching trees (like above). A
hedge pattern describes a set of matching hedges. Both kinds of patterns may con-
tain variable bindings which serve to extract constituents of a tree or hedge.

The type of a patterns and the expected types of variables within patterns are deter-
mined by the context and the structure of the patterns. The last case ensures that a
variable bound to a hedge pattern will have a sequence type.

The following patterns are added:

A hedge pattern p1, . . . , pn where n ≥ 0 is a sequence of patterns separated by com-
mas and matching the hedge described by the components. Hedge patterns may
appear as arguments to constructor applications, or nested within a another hedge
pattern if grouped with parentheses. Note that empty hedge patterns are allowed.
The type of tree patterns that appear in a hedge pattern is the expected type as deter-
mined from the enclosing constructor. A fixed-length argument pattern is a special
hedge pattern where where all pi are tree patterns.

A choice pattern p1| . . . |pn is a choice among several alternatives, which may not
contain variable-binding patterns. It matches every tree and every hedge matched
by at least one of its alternatives. Note that the empty sequence may appear as an
alternative. An option pattern p? is an abbreviation for (p|). A choice is a tree pattern
if all its branches are tree patterns. In this case, all branches must conform to the
expected type and the type of the choice is the least upper bound of the branches.
Otherwise, its type is determined by the enclosing hedge pattern it is part of.

An iterated pattern p∗ matches zero, one or more occurrences of items matched by
p, where p may be either a tree pattern or a hedge pattern. p may not contain a
variable-binding. A non-empty iterated pattern p+ is an abbreviation for (p, p∗).

220 Pattern Matching

The treatment of the following patterns changes with to the previous section:

A constructor pattern c(p) consists of a simple type c followed by a pattern p. If c
designates a monomorphic case class, then it must conform to the expected type of
the pattern, the pattern must be a fixed length argument pattern p1, . . . , pn whose
length corresponds to the number of arguments of c’s primary constructor. The
expected types of the component patterns are then taken from the formal parame-
ter types of (said) constructor. If c designates a polymorphic case class, then there
must be a unique type application instance of it such that the instantiation of c con-
forms to the expected type of the pattern. The instantiated formal parameter types
of c’s primary constructor are then taken as the expected types of the component
patterns p1, . . . , pn . In both cases, the pattern matches all objects created from con-
structor invocations c(v1, . . . , vn) where each component pattern pi matches the
corresponding value vi . If c does not designate a case class, it must be a subclass
of Seq[T]. In that case p may be an arbitrary sequence pattern. Value patterns
in p are expected to conform to type T , and the pattern matches all objects whose
elements() method returns a sequence that matches p.

The pattern (p) is regarded as equivalent to the pattern p, if p is a nonempty se-
quence pattern. The empty tuple () is a shorthand for the constructor pattern Unit.

A variable-binding x@p is a simple identifier x which starts with a lower case letter,
together with a pattern p. It matches every item (tree or hedge) matched by p, and
in addition binds it to the variable name. If p is a tree pattern of type T , the type of x
is also T . If p is a hedge pattern enclosed by constructor c <:Seq[T], then the type
of x is List[T] where T is the expected type as dictated by the constructor.

Regular expressions that contain variable bindings may be ambiguous, i.e. there
might be several ways to match a sequence against the pattern. In these cases, the
right-longest policy applies: patterns that appear more to the right than others in a
sequence take precedence in case of overlaps.

Example 22.1.2 Some examples of patterns are:

1. The pattern ex: IOException matches all instances of class IOException,
binding variable ex to the instance.

2. The pattern Pair(x, _) matches pairs of values, binding x to the first compo-
nent of the pair. The second component is matched with a wildcard pattern.

3. The pattern List(x, y, xs @ _ *)matches lists of length≥ 2, binding x to
the list’s first element, y to the list’s second element, and xs to the remainder,
which may be empty.

4. The pattern List(1, x@((’a’ | ’b’)+),y,_) matches a list that con-
tains 1 as its first element, continues with a non-empty sequence of ’a’s and
’b’s, followed by two more elements. The sequence ’a’s and ’b’s is bound to x,
and the next to last element is bound to y.

22.2 Pattern Matching Expressions 221

5. The pattern List(x@(’a’*), ’a’+) matches a non-empty list of ’a’s.
Because of the shortest match policy, x will always be bound to the empty
sequence.

6. The pattern List(x@(’a’+), ’a’*) also matches a non-empty list of
’a’s. Here, x will always be bound to the sequence containing one ’a’

22.2 Pattern Matching Expressions

Syntax:

BlockExpr ::= ‘{’ CaseClause {CaseClause} ‘}’
CaseClause ::= case Pattern [‘if’ PostfixExpr] ‘=>’ Block

A pattern matching expression case p1 => b1 . . . case pn => bn consists of a
number n ≥ 1 of cases. Each case consists of a (possibly guarded) pattern pi and
a block bi . The scope of the pattern variables in pi is the corresponding block bi .

The expected type of a pattern matching expression must in part be defined. It
must be either scala.Function1[Tp, Tr] or scala.PartialFunction[Tp, Tr],
where the argument type Tp must be fully determined, but the result type Tr may
be undetermined. All patterns are typed relative to the expected type Tp (§22.1). The
expected type of every block bi is Tr . Let Tb be the least upper bound of the types
of all blocks bi . The type of the pattern matching expression is then the required
type with Tr replaced by Tb (i.e. the type is either scala.Function[Tp, Tb] or
scala.PartialFunction[Tp, Tb].

When applying a pattern matching expression to a selector value, patterns are tried
in sequence until one is found which matches the selector value (§22.1). Say this
case is case pi ⇒ bi . The result of the whole expression is then the result of evalu-
ating bi , where all pattern variables of pi are bound to the corresponding parts of
the selector value. If no matching pattern is found, a scala.MatchError exception
is thrown.

The pattern in a case may also be followed by a guard suffix if e with a boolean
expression e. The guard expression is evaluated if the preceding pattern in the case
matches. If the guard expression evaluates to true, the pattern match succeeds as
normal. If the guard expression evaluates to false, the pattern in the case is con-
sidered not to match and the search for a matching pattern continues.

In the interest of efficiency the evaluation of a pattern matching expression may try
patterns in some other order than textual sequence. This might affect evaluation
through side effects in guards. However, it is guaranteed that a guard expression is
evaluated only if the pattern it guards matches.

Example 22.2.1 Often, pattern matching expressions are used as arguments of the
match method, which is predefined in class Any (§27.1) and is implemented there by

222 Pattern Matching

postfix function application. Here is an example:

def length [a] (xs: List[a]) = xs match {
case Nil => 0
case x :: xs1 => 1 + length (xs1)

}

In an application of match such as the one above, the expected type of all patterns
is the type of the qualifier of match. In the example above, the expected type of the
patterns Nil and x :: xs1 would be List[a], the type of xs.

Chapter 23

Views

Views are user-defined, implicit coercions that are automatically inserted by the
compiler.

23.1 View Definition

A view definition is a normal function definition with one value parameter where
the name of the defined function is view.

Example 23.1.1 The following defines an implicit coercion function from strings to
lists of characters.

def view(xs: String): List[char] =
if (xs.length() == 0) List()
else xs.charAt(0) :: xs.substring(1);

23.2 View Application

View applications are inserted implicitly in two situations.

1. Around an expression e of type T , if T does not conform to the expression’s
expected type PT .

2. In a selection e.m with e of type T , if the selector m does not denote a member
of T .

In the first case, a view method view is searched which is applicable to e and whose
result type conforms to PT . If such a method is found, the expression e is converted
to view(e).

224 Views

In the second case, a view method view is searched which is applicable to e and
whose result contains a member named m. If such a method is found, the selection
e.m is converted to view(e).m

23.3 Finding Views

Searching a view which is applicable to an expression e of type T is a three-step
process.

1. First, the set A of available views is determined. A is the smallest set such
that:

(a) If a unary method called view is accessible without qualifier anywhere
on the path of the program tree that leads from e to the root of the tree
(describing the whole compilation unit), then that method is in the set
A . Methods are accessible without qualifier because they are locally de-
fined in an enclosing scope, or imported into an enclosing scope, or in-
herited by an enclosing class.

(b) If a unary method called view is a member of an object C such that there
is a base class C of T with the same name as the object and defined in
the same scope, then that method is in the set A .

2. Then, among all the methods in A the set of all applicable views B is deter-
mined. A view method is applicable if it can be applied to values of type T ,
and another condition is satisfied which depends on the context of the view
application:

(a) If the view is a conversion to a given prototype PT , then the view’s result
type must conform to PT .

(b) If the view is a conversion in a selection with member m, then the view’s
result type must contain a member named m.

Note that in the determining of view applicability, we do not permit further
views to be inserted. I.e. a view is applicable to an expression e of type T if
it can be applied to e, without a further view conversion of e to the view’s
formal parameter type. Likewise, a view’s result type must conform to a given
prototype directly, no second view conversion is allowed.

3. It is an error if the set of applicable views B is empty. For non-empty B, the
view method which is most specific (§21.6) in B is selected. It is an error if no
most specific view exists, or if it is not unique.

Example 23.3.1 Consider the following situation.

23.4 View-Bounds 225

class A;
class B extends A;
class C;
object B {
def view(x: B): C = ...

}
object Test with Application {
def view(x: A): C = ...
val x: C = new B;

}

For the expression new B there are two available views. The view defined in object
B is available since its associated class is (a superclass of) the expression’s type B.
The view defined in object Test is available since it is accessible without qualifica-
tion at the point of the expression new B. Both views are also applicable since they
map values of type B to results of type C. However, the view defined in object B is
more specific than the view defined in object Test. Hence, the last statement in the
example above is implicitly augmented to

val x: C = B.view(new B)

23.4 View-Bounds

Syntax:

TypeParam ::= id [>: Type] [<% Type]

A type parameter a may have a view bound a <% T instead of a regular upper bound
a <: T. In that case the type parameter may be instantiated to any type S which is
convertible by application of a view method to the view bound T. Here, we assume
there exists an always available identity view method

def view[a](x: a): a = x .

Hence, the type parameter a can always be instantiated to subtypes of the view
bound T, just as if T was a regular upper bound.

View bounds for type parameters behave analogously to upper bounds wrt to type
conformance (§18.5.2), variance checking (§19.4), and overriding (§20.1.5).

Methods or classes with view-bounded type parameters implicitly take view func-
tions as parameters. For every view-bounded type parameter a <% T one adds an
implicit value parameter view: a => T. When instantiating the type parameter a
to some type S, the most specific applicable view method from type S to type T is
selected, according to the rules of §23.3. This method is then passed as actual argu-
ment to the corresponding view parameter.

226 Views

Implicit view parameters of a method or class are then taken as available view meth-
ods in its body.

Example 23.4.1 Consider the following definition of a trait Comparable and a view
from strings to that trait.

trait Comparable[a] {
def less(x: a): boolean

}

object StringsAreComparable {
def view(x: String): Comparable[String] = new Comparable[String] {
def less(y: String) = x.compareTo(y) < 0

}
}

Now, define a binary tree with a method insert which inserts an element in the tree
and a method elements which returns a sorted list of all elements of the tree. The
tree is defined for all types of elements a that are viewable as Comparable[a].

trait Tree[a <% Comparable[a]] {
def insert(x: a): Tree[a] = this match {
case Empty() => new Node(x, Empty(), Empty())
case Node(elem, l, r) =>
if (x == elem) this
else if (x less elem) Node(elem, l insert x, r)
else Node(elem, l, r insert x);

}
def elements: List[a] = this match {
case Empty() => List()
case Node(elem, l, r) =>
l.elements ::: List(elem) ::: r.elements

}
}
case class Empty[a <% Comparable[a]]()
extends Tree[a];

case class Node[a <% Comparable[a]](elem: a, l: Tree[a], r: Tree[a])
extends Tree[a];

Finally, define a test program which builds a tree from all command line argument
strings and then prints out the elements as a sorted sequence.

object Test {
import StringsAreComparable.view;

def main(args: Array[String]) = {
var t: Tree[String] = Empty();

23.4 View-Bounds 227

for (val s <- args) { t = t insert s }
System.out.println(t.elements)

}
}

Note that the definition var t: Tree[String] = Empty(); is legal because at that
point a view method from String to Comparable[String] has been imported and
is therefore accessible without a prefix. The imported view method is passed as an
implicit argument to the Empty constructor.

Here is the Test program again, this time with implicit views made visible:

object Test {
import StringsAreComparable.view;

def main(args: Array[String]) = {
var t: Tree[String] = Empty(StringsAreComparable.view);
for (val s <- args) { t = t insert s }
System.out.println(t.elements)

}
}

And here are the tree classes with implicit views added:

trait Tree[a <% Comparable[a]](view: a => Comparable[a]) {
def insert(x: a): Tree[a] = this match {
case Empty(_) => new Node(x, Empty(view), Empty(view))
case Node(_, elem, l, r) =>
if (x == elem) this
else if (view(x) less elem) Node(view, elem, l insert x, r)
else Node(view, elem, l, r insert x);

}
def elements: List[a] = this match {
case Empty(_) => List()
case Node(_, elem, l, r) =>
l.elements ::: List(elem) ::: r.elements

}
}
case class Empty[a <% Comparable[a]](view: a => Comparable[a])
extends Tree[a];

case class Node[a <% Comparable[a]](view: a => Comparable[a],
elem: a, l: Tree[a], r: Tree[a])

extends Tree[a];

Note that views entail a certain run-time overhead because they need to be passed
as additional arguments to view-bounded methods and classes. Furthermore, every
application of a view entails the construction of an object which is often immedi-

228 Views

ately discarded afterwards – see for instance with the translation of (x less elem)

in the implementation of method insert above. It is expected that the latter cost
can be absorbed largely or completely by compiler optimizations (which are, how-
ever, not yet implemented at the present stage).

23.5 Conditional Views

View methods might themselves have view-bounded type parameters; this allows
the definition of conditional views.

Example 23.5.1 The following view makes lists comparable, provided the list ele-
ment type is also comparable.

def view[a <% Comparable[a]](xs: List[a]): Comparable[List[a]] =
new Comparable[List[a]] {
def less (ys: List[a]): boolean =
!ys.isEmpty
&&
(xs.isEmpty ||
(xs.head less ys.head) ||
(xs.head == ys.head) && (xs.tail less ys.tail))

}

Note that the condition (xs.head less ys.head) invokes the less method of the
list element type, which is unknown at the point of the definition of the view
method. As usual, view-bounded type parameters are translated to implicit view
arguments. In this case, the view method over lists would receive the view method
over list elements as implicit parameter.

Chapter 24

Top-Level Definitions

Syntax:

CompilationUnit ::= [package QualId ‘;’] {TopStat ‘;’} TopStat
TopStat ::= {AttributeClause} {Modifier} TmplDef

| Import
| Packaging
|

QualId ::= id {‘.’ id}

A compilation unit consists of a sequence of packagings, import clauses, and class
and object definitions, which may be preceded by a package clause.

A compilation unit package p; stats starting with a package clause is equivalent
to a compilation unit consisting of a single packaging package p { stats }.

Implicitly imported into every compilation unit are, in that order : the package
java.lang, the package scala, and the object scala.Predef (§27.4). Members of
a later import in that order hide members of an earlier import.

24.1 Packagings

Syntax:

Packaging ::= package QualId ‘{’ {TopStat ‘;’} TopStat ‘}’

A package is a special object which defines a set of member classes, objects and
packages. Unlike other objects, packages are not introduced by a definition. In-
stead, the set of members of a package is determined by packagings.

A packaging package p ds injects all definitions in ds as members into the pack-
age whose qualified name is p. If a definition in ds is labeled private, it is visible

230 Top-Level Definitions

only for other members in the package.

Selections p.m from p as well as imports from p work as for objects. However, unlike
other objects, packages may not be used as values. It is illegal to have a package
with the same fully qualified name as a module or a class.

Top-level definitions outside a packaging are assumed to be injected into a special
empty package. That package cannot be named and therefore cannot be imported.
However, members of the empty package are visible to each other without qualifi-
cation.

Example 24.1.1 The following example will create a hello world program as func-
tion main of module test.HelloWorld.

package test;

object HelloWord {
def main(args: Array[String]) = System.out.println("hello world")

}

Chapter 25

Local Type Inference

To be completed.

Chapter 26

XML expressions and patterns

This chapter describes the syntactic structure of XML expressions and patterns. It
follows as close as possible the XML 1.0 specification [W3Cb], changes being man-
dated by the possibility of embedding Scala code fragments.

26.1 XML expressions

XML expressions are expressions generated by the following production, where the
opening bracket ‘<’ of the first element must be in a position to start the lexical XML
mode (see 16.5).

Syntax:

XmlExpr ::= Element {Element}

Well-formedness constraints of the XML specification apply, which means for in-
stance that start tags and end tags must match, and attributes may only be defined
once, with the exception of constraints related to entity resolution.

The following productions describe Scala’s extensible markup language, designed
as close as possible to the W3C extensible markup language standard. Only the
productions for attribute values and character data are changed. Scala does not
support neither declarations, CDATA sections nor processing instructions. Entity
references are not resolved at runtime.

Syntax:

Element ::= EmptyElemTag
| STag Content ETag

EmptyElemTag ::= ‘<’ Name {S Attribute} [S] ‘/>’

234 XML expressions and patterns

STag ::= ‘<’ Name {S Attribute} [S] ‘>’
ETag ::= ‘</’ Name [S] ’>’
Content ::= [CharData] {Content1 [CharData]}
Content1 ::= Element

| Reference
| CDSect
| PI
| Comment
| ScalaExpr

If an XML expression is a single element, its value is a runtime representation of
an XML node (an instance of a subclass of scala.xml.Node). If the XML expression
consists of more than one element, then its value is a runtime representation of a
sequence of XML nodes (an instance of a subclass of scala.Seq[scala.xml.Node]).

If an XML expression is an entity reference, CDATA section, processing instructions
or a comments, it is represented by an instance of the corresponding Scala runtime
class.

By default, beginning and trailing whitespace in element content is removed, and
consecutive occurrences of whitespace are replaced by a single space character
\u0020. This behaviour can be changed to preserve all whitespace with a compiler
option. Syntax:

Attribute ::= Name Eq AttValue

AttValue ::= ‘"’ {CharQ | CharRef} ‘"’
| ‘’’ {CharA | CharRef} ‘’’
| ScalaExp

ScalaExpr ::= ‘{’ expr ‘}’

CharData ::= { CharNoRef } without {CharNoRef}‘{’CharB {CharNoRef}
and without {CharNoRef}‘]]>’{CharNoRef}

XML expressions may contain Scala expressions as attribute values or within nodes.
In the latter case, these are embedded using a single opening brace ‘’ and ended by
a closing brace ‘’. To express a single opening braces within XML text as generated
by CharData, it must be doubled. Thus, ‘‘ represents the XML text ‘‘ and does not
introduce an embedded Scala expression.

Syntax:

BaseChar, Char, Comment, CombiningChar, Ideographic, NameChar, S, Reference
::= “as in W3C XML”

Char1 ::= Char without ‘<’ | ‘&’
CharQ ::= Char1 without ‘"’

26.2 XML patterns 235

CharA ::= Char1 without ‘’’
CharB ::= Char1 without ’{’

Name ::= XNameStart {NameChar}

XNameStart ::= ‘_’ | BaseChar | Ideographic
(as in W3C XML, but without ‘:’

26.2 XML patterns

XML patterns are patterns generated by the following production, where the open-
ing bracket ‘<’ of the element patterns must be in a position to start the lexical XML
mode (see 16.5).

Syntax:

XmlPattern ::= ElementPattern {ElementPattern}

Well-formedness constraints of the XML specification apply.

If an XML pattern is a single element pattern, it expects the type of runtime rep-
resentation of an XML tree, and matches exactly one instance of this type that has
the same structure as described by the pattern. If an XML pattern consists of more
than one element, then it expects the type of sequences of runtime representations
of XML trees, and matches every sequence whose elements match the sequence
described by the pattern.

XML patterns may contain Scala patterns(22.2).

Whitespace is treated the same way as in XML expressions. Patterns that are entity
references, CDATA sections, processing instructions and comments match runtime
representations which are the the same.

By default, beginning and trailing whitespace in element content is removed, and
consecutive occurrences of whitespace are replaced by a single space character
\u0020. This behaviour can be changed to preserve all whitespace with a compiler
option.

Syntax:

ElemPattern ::= EmptyElemTagP
| STagP ContentP ETagP

EmptyElemTagP ::= ’<’ Name [S] ’/>’
STagP ::= ’<’ Name [S] ’>’
ETagP ::= ’</’ Name [S] ’>’
ContentP ::= [CharData] {(ElemPattern|ScalaPatterns) [CharData]}
ContentP1 ::= ElemPattern

236 XML expressions and patterns

| Reference
| CDSect
| PI
| Comment
| ScalaPatterns

ScalaPatterns ::= ’{’ patterns ’}’

Chapter 27

The Scala Standard Library

The Scala standard library consists of the package scala with a number of classes
and modules. Some of these classes are described in the following.

27.1 Root Classes

The root of the Scala class hierarchy is formed by class Any. Every class in a Scala
execution environment inherits directly or indirectly from this class. Class Any has
two direct subclasses: AnyRef andAnyVal.

The subclass AnyRef represents all values which are represented as objects in the
underlying host system. Every user-defined Scala class inherits directly or indi-
rectly from this class. Furthermore, every user-defined Scala class also inherits
the trait scala.ScalaObject. Classes written in other languages still inherit from
scala.AnyRef, but not from scala.ScalaObject.

The class AnyVal has a fixed number subclasses, which describe values which are
not implemented as objects in the underlying host system.

Classes AnyRef and AnyVal are required to provide only the members declared in
class Any, but implementations may add host-specific methods to these classes (for
instance, an implementation may identify class AnyRef with its own root class for
objects).

The standard interfaces of these root classes is described by the following defini-
tions.

package scala;
abstract class Any {

/** Defined equality; abstract here */
def equals(that: Any): boolean;

238 The Scala Standard Library

/** Semantic equality between values of same type */
final def == (that: Any): boolean = this equals that

/** Semantic inequality between values of same type */
final def != (that: Any): boolean = !(this == that)

/** Hash code */
def hashCode(): Int = . . .

/** Textual representation */
def toString(): String = . . .

/** Type test */
def isInstanceOf[a]: Boolean = match {
case x: a => true
case _ => false

}

/** Type cast */
def asInstanceOf[a]: a = match {
case x: a => x
case _ => if (this eq null) this

else throw new ClassCastException()
}

/** Pattern match */
def match[a, b](cases: a => b): b = cases(this);

}
final class AnyVal extends Any;
class AnyRef extends Any {
def equals(that: Any): boolean = this eq that;
final def eq(that: Any): boolean = . . .; // reference equality

}
trait ScalaObject extends AnyRef;

The type cast operation asInstanceOf has a special meaning (not expressed in the
code above) when its type parameter is a numeric type. For any type T <: Double,
and any numeric value v v.asInstanceIf[T] converts v to type T using the rules
of Java’s numeric type cast operation. The conversion might truncate the numeric
value (as when going from Long to Int or from Int to Byte) or it might lose precision
(as when going from Double to Float or when converting between Long and Float).

27.2 Value Classes 239

27.2 Value Classes

Value classes are classes whose instances are not represented as objects by the un-
derlying host system. All value classes inherit from class AnyVal. Scala implemen-
tations need to provide the value classes Unit, Boolean, Double, Float, Long, Int,
Char, Short, and Byte (but are free to provide others as well). The signatures of
these classes are defined in the following.

27.2.1 Class Double

package scala;
abstract sealed class Double extends AnyVal {
def + (that: Double): Double // double addition
def - (that: Double): Double // double subtraction
def * (that: Double): Double // double multiplication
def / (that: Double): Double // double division
def % (that: Double): Double // double remainder

def == (that: Double): Boolean // double equality
def != (that: Double): Boolean // double inequality
def < (that: Double): Boolean // double less
def > (that: Double): Boolean // double greater
def <= (that: Double): Boolean // double less or equals
def >= (that: Double): Boolean // double greater or equals

def - : Double = 0.0 - this // double negation
def + : Double = this

}

27.2.2 Class Float

package scala;
abstract sealed class Float extends AnyVal {
def coerce: Double // convert to Double

def + (that: Double): Double; // double addition
def + (that: Float): Double // float addition
/* analogous for -, *, /, % */

def == (that: Double): Boolean; // double equality
def == (that: Float): Boolean; // float equality
/* analogous for !=, <, >, <=, >= */

def - : Float; // float negation
def + : Float

240 The Scala Standard Library

}

27.2.3 Class Long

package scala;
abstract sealed class Long extends AnyVal {
def coerce: Double // convert to Double
def coerce: Float // convert to Float

def + (that: Double): Double; // double addition
def + (that: Float): Double; // float addition
def + (that: Long): Long = // long addition
/* analogous for -, *, /, % */

def << (cnt: Int): Long // long left shift
def >> (cnt: Int): Long // long signed right shift
def >>> (cnt: Int): Long // long unsigned right shift
def & (that: Long): Long // long bitwise and
def | (that: Long): Long // long bitwise or
def ^ (that: Long): Long // long bitwise exclusive or

def == (that: Double): Boolean; // double equality
def == (that: Float): Boolean; // float equality
def == (that: Long): Boolean // long equality
/* analogous for !=, <, >, <=, >= */

def - : Long; // long negation
def + : Long; // long identity
def ~ : Long // long bitwise negation

}

27.2.4 Class Int

package scala;
abstract sealed class Int extends AnyVal {
def coerce: Double // convert to Double
def coerce: Float // convert to Float
def coerce: Long // convert to Long

def + (that: Double): Double; // double addition
def + (that: Float): Double; // float addtion
def + (that: Long): Long; // long addition
def + (that: Int): Int; // int addition
/* analogous for -, *, /, % */

def << (cnt: Int): Int; // int left shift

27.2 Value Classes 241

/* analogous for >>, >>> */

def & (that: Long): Long; // long bitwise and
def & (that: Int): Int; // int bitwise and
/* analogous for |, ^ */

def == (that: Double): Boolean; // double equality
def == (that: Float): Boolean; // float equality
def == (that: Long): Boolean // long equality
def == (that: Int): Boolean // int equality
/* analogous for !=, <, >, <=, >= */

def - : Int; // int negation
def + : Int; // int identity
def ~ : Int; // int bitwise negation

}

27.2.5 Class Short

package scala;
abstract sealed class Short extends AnyVal {
def coerce: Double // convert to Double
def coerce: Float // convert to Float
def coerce: Long // convert to Long
def coerce: Int // convert to Int

}

27.2.6 Class Char

package scala;
abstract sealed class Char extends AnyVal {
def coerce: Double // convert to Double
def coerce: Float // convert to Float
def coerce: Long // convert to Long
def coerce: Int // convert to Int

def isDigit: Boolean; // is this character a digit?
def isLetter: Boolean; // is this character a letter?
def isLetterOrDigit: Boolean; // is this character a letter or digit?
def isWhiteSpace // is this a whitespace character?

}

27.2.7 Class Short

package scala;
abstract sealed class Short extends AnyVal {

242 The Scala Standard Library

def coerce: Double // convert to Double
def coerce: Float // convert to Float
def coerce: Long // convert to Long
def coerce: Int // convert to Int
def coerce: Short // convert to Short

}

27.2.8 Class Boolean

package scala;
abstract sealed class Boolean extends AnyVal {
def && (def x: Boolean): Boolean; // boolean and
def || (def x: Boolean): Boolean; // boolean or
def & (x: Boolean): Boolean; // boolean strict and
def | (x: Boolean): Boolean // boolean strict or

def == (x: Boolean): Boolean // boolean equality
def != (x: Boolean): Boolean // boolean inequality

def ! (x: Boolean): Boolean // boolean negation
}

27.2.9 Class Unit

package scala;
abstract sealed class Unit extends AnyVal;

27.3 Standard Reference Classes

This section presents some standard Scala reference classes which are treated in a
special way in Scala compiler – either Scala provides syntactic sugar for them, or
the Scala compiler generates special code for their operations. Other classes in the
standard Scala library are documented by HTML pages elsewhere.

27.3.1 Class String

The String class is usually derived from the standard String class of the underlying
host system (and may be identified with it). For Scala clients the class is taken to
support in each case a method

def + (that: Any): String

which concatenates its left operand with the textual representation of its right
operand.

27.3 Standard Reference Classes 243

27.3.2 The Tuple classes

Scala defines tuple classes Tuplen for n = 2, . . . , 9. These are defined as follows.

package scala;
case class Tuplen[+a_1, ..., +a_n](_1: a_1, ..., _n: a_n) {
def toString = "(" ++ _1 ++ "," ++ . . . ++ "," ++_n ++ ")"

}

The implicitly imported Predef object (§27.4) defines the names Pair as an alias of
Tuple2 and Triple as an alias for Tuple3.

27.3.3 The Function Classes

Scala defines function classes Functionn for n = 1, . . . , 9. These are defined as fol-
lows.

package scala;
class Functionn[-a_1, ..., -a_n, +b] {
def apply(x_1: a_1, ..., x_n: a_n): b;
def toString = "<function>";

}

A subclass of Function1 represents partial functions, which are undefined on some
points in their domain. In addition to the apply method of functions, partial func-
tions also have a isDefined method, which tells whether the function is defined at
the given argument:

class PartialFunction[-a,+b] extends Function1[a, b] {
def isDefinedAt(x: a): Boolean

}

The implicitly imported Predef object (§27.4) defines the name Function as an alias
of Function1.

27.3.4 Class Array

The class of generic arrays is given as follows.

package scala;
class Array[a](length: int) with Function[Int, a] {
def length: int;
def apply(i: Int): a;
def update(i: Int)(x: a): Unit;

}

244 The Scala Standard Library

27.4 The Predef Object

The Predef module defines standard functions and type aliases for Scala programs.
It is always implicitly imported, so that all its defined members are available without
qualification. Here is its definition for the JVM environment.

package scala;
object Predef {
type byte = scala.Byte;
type short = scala.Short;
type char = scala.Char;
type int = scala.Int;
type long = scala.Long;
type float = scala.Float;
type double = scala.Double;
type boolean = scala.Boolean;
type unit = scala.Unit;

type String = java.lang.String;
type NullPointerException = java.lang.NullPointerException;
type Throwable = java.lang.Throwable;
// other aliases to be identified

/** Abort with error message */
def error(message: String): All = throw new Error(message);

/** Throw an error if given assertion does not hold. */
def assert(assertion: Boolean): Unit =
if (!assertion) throw new Error("assertion failed");

/** Throw an error with given message if given assertion does not hold */
def assert(assertion: Boolean, message: Any): Unit = {
if (!assertion) throw new Error("assertion failed: " + message);

/** Create an array with given elements */
def Array[A](xs: A*): Array[A] = {
val array: Array[A] = new Array[A](xs.length);
var i = 0;
for (val x <- xs.elements) { array(i) = x; i = i + 1; }
array;

}

/** Aliases for pairs and triples */
type Pair[+p, +q] = Tuple2[p, q];
def Pair[a, b](x: a, y: b) = Tuple2(x, y);
type Triple[+a, +b, +c] = Tuple3[a, b, c];

27.5 Class Node 245

def Triple[a, b, c](x: a, y: b, z: c) = Tuple3(x, y, z);

/** Alias for unary functions */
type Function = Function1;

/** Some standard simple functions */
def id[a](x: a): a = x;
def fst[a](x: a, y: Any): a = x;
def scd[a](x: Any, y: a): a = y;

}

27.5 Class Node

package scala.xml ;

trait Node {

/** the label of this node */
def label: String;

/** attribute axis */
def attribute: Map[String, String];

/** child axis (all children of this node) */
def child: Seq[Node];

/** descendant axis (all descendants of this node) */
def descendant:Seq[Node] = child.toList.flatMap {
x => x::x.descendant.asInstanceOf[List[Node]]

} ;

/** descendant axis (all descendants of this node) */
def descendant_or_self:Seq[Node] = this::child.toList.flatMap {
x => x::x.descendant.asInstanceOf[List[Node]]

} ;

override def equals(x:Any):boolean = x match {
case that:Node =>
that.label == this.label &&
that.attribute.sameElements(this.attribute) &&
that.child.sameElements(this.child)

case _ => false
}

246 The Scala Standard Library

/** XPath style projection function. Returns all children of this node

* that are labelled with ’that. The document order is preserved.

*/
def \(that:Symbol): NodeSeq = {
new NodeSeq({
that.name match {

case "_" => child.toList;
case _ =>
var res:List[Node] = Nil;
for(val x <- child.elements; x.label == that.name) {
res = x::res;

}
res.reverse

}
});

}

/** XPath style projection function. Returns all nodes labelled with the

* name ’that from the descendant_or_self axis. Document order is preserved.

*/
def \\(that:Symbol): NodeSeq = {
new NodeSeq(
that.name match {
case "_" => this.descendant_or_self;
case _ => this.descendant_or_self.asInstanceOf[List[Node]].
filter(x => x.label == that.name);

})
}

/** hashcode for this XML node */
override def hashCode() =
Utility.hashCode(label, attribute.toList.hashCode(), child);

/** string representation of this node */
override def toString() = Utility.toXML(this);

}

Bibliography

[ASS96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. The Structure
and Interpretation of Computer Programs, 2nd edition. MIT Press, Cam-
bridge, Massachusetts, 1996.

[GR83] Adele Goldberg and David Robson. Smalltalk-80; The Language and Its
Implementation. Addison-Wesley, 1983. ISBN 0-201-11371-6.

[Mat01] Yukihiro Matsumoto. Ruby in a Nutshell. O’Reilly & Associates, nov 2001.
ISBN 0-596-00214-9.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, Dec 1978.

[OCRZ03] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger.
A nominal theory of objects with dependent types. In Proc. FOOL 10,
January 2003.
http://www.cis.upenn.edu/~bcpierce/FOOL/FOOL10.html.

[vRD03] Guido van Rossum and Fred L. Drake. The Python Language Reference
Manual. Network Theory Ltd, sep 2003. ISBN 0-954-16178-5
http://www.python.org/doc/current/ref/ref.html.

[W3Ca] W3C. Document object model (DOM).
http://www.w3.org/DOM/.

[W3Cb] W3C. Extensible markup language (XML).
http://www.w3.org/TR/REC-xml.

[Wir77] Niklaus Wirth. What can we do about the unecessary diversity of nota-
tion for syntactic definitions? Comm. ACM, 20:822–823, November 1977.

Chapter A

Scala Syntax Summary

The lexical syntax of Scala is given by the following grammar in EBNF form.

upper ::= ‘A’ | . . . | ‘Z’ | ‘$’ | ‘_’ and Unicode Lu
lower ::= ‘a’ | . . . | ‘z’ and Unicode Ll
letter ::= upper | lower and Unicode categories Lo, Lt, Nl
digit ::= ‘0’ | . . . | ‘9’
special ::= “all other characters in \u0020-007F and Unicode categories Sm, So

except parentheses ([]) and periods”

op ::= special {special}
varid ::= lower {letter | digit} [‘_’ {digit} [id]]
id ::= upper {letter | digit} [‘_’ {digit} [id]]

| varid
| op
| ‘\’stringLit

intLit ::= “as in Java”
floatLit ::= “as in Java”
charLit ::= “as in Java”
stringLit ::= “as in Java”
symbolLit ::= ‘\’’ id

comment ::= ‘/*’ ‘‘any sequence of characters’’ ‘*/’
| ‘//’ ‘any sequence of characters up to end of line’’

The context-free syntax of Scala is given by the following EBNF grammar.

Literal ::= intLit
| floatLit
| charLit
| stringLit

250 Scala Syntax Summary

| symbolLit
| true
| false
| null

StableId ::= id
| Path ‘.’ id

Path ::= StableId
| [id ‘.’] this
| [id ’.’] super [‘[’ id ‘]’]‘.’ id

Type ::= Type1 ‘=>’ Type
| ‘(’ [Types] ‘)’ ‘=>’ Type
| Type1

Type1 ::= SimpleType {with SimpleType} [Refinement]
SimpleType ::= SimpleType TypeArgs

| SimpleType ‘#’ id
| StableId
| Path ‘.’ type
| ‘(’ Type ’)’

TypeArgs ::= ‘[’ Types ‘]’
Types ::= Type {‘,’ Type}
Refinement ::= ‘{’ [RefineStat {‘;’ RefineStat}] ‘}’
RefineStat ::= Dcl

| type TypeDef
|

Exprs ::= Expr {‘,’ Expr}
Expr ::= Bindings ‘=>’ Expr

| Expr1
Expr1 ::= if ‘(’ Expr1 ‘)’ Expr [[‘;’] else Expr]

| try ‘{’ Block ‘}’ [catch Expr] [finally Expr]
| do Expr [‘;’] while ‘(’ Expr ’)’
| for ‘(’ Enumerators ‘)’ (do | yield) Expr
| return [Expr]
| throw Expr
| [SimpleExpr ‘.’] id ‘=’ Expr
| SimpleExpr ArgumentExprs ‘=’ Expr
| PostfixExpr [‘:’ Type1]
| MethodClosure

PostfixExpr ::= InfixExpr [id]
InfixExpr ::= PrefixExpr

| InfixExpr id PrefixExpr
PrefixExpr ::= [‘-’ | ‘+’ | ‘~’ | ‘!’] SimpleExpr
SimpleExpr ::= Literal

| Path

251

| ‘(’ [Expr] ‘)’
| BlockExpr
| new Template
| SimpleExpr ‘.’ id
| SimpleExpr TypeArgs
| SimpleExpr ArgumentExprs
| XmlExpr

ArgumentExprs ::= ‘(’ [Exprs] ’)’
| BlockExpr

MethodClosure ::= ‘.’ Id {‘.’ Id | TypeArgs | ArgumentExprs}
BlockExpr ::= ‘{’ CaseClause {CaseClause} ‘}’

| ‘{’ Block ‘}’
Block ::= {BlockStat ‘;’} [ResultExpr]
BlockStat ::= Import

| Def
| {LocalModifier} TmplDef
| Expr1
|

ResultExpr ::= Expr1
| Bindings ‘=>’ Block

Enumerators ::= Generator {‘;’ Enumerator}
Enumerator ::= Generator

| Expr
Generator ::= val Pattern1 ‘<-’ Expr

CaseClause ::= case Pattern [‘if’ PostfixExpr] ‘=>’ Block

Constr ::= StableId [TypeArgs] [‘(’ [Exprs] ‘)’]
SimpleConstr ::= Id [TypeArgs] [‘(’ [Exprs] ‘)’]

Pattern ::= Pattern1 { ‘|’ Pattern1 }
Pattern1 ::= varid ‘:’ Type

| ‘_’ ‘:’ Type
| Pattern2

Pattern2 ::= [varid ‘@’] Pattern3
Pattern3 ::= SimplePattern [’*’ | ’?’ | ’+’]

| SimplePattern { id SimplePattern }
SimplePattern ::= ‘_’

| varid
| Literal
| StableId [‘(’ [Patterns] ‘)’]
| ‘(’ [Patterns] ‘)’
| XmlPattern

Patterns ::= Pattern {‘,’ Pattern}

252 Scala Syntax Summary

TypeParamClause ::= ‘[’ VarTypeParam {‘,’ VarTypeParam} ‘]’
FunTypeParamClause ::= ‘[’ TypeParam {‘,’ TypeParam} ‘]’
VarTypeParam ::= [‘+’ | ‘-’] TypeParam
TypeParam ::= id [>: Type] [<: Type | <% Type]
ParamClause ::= ‘(’ [Param {‘,’ Param}] ‘)’
ClassParamClause::= ‘(’ [ClassParam {‘,’ ClassParam}] ‘)’
Param ::= id ‘:’ [‘=>’ Type [‘*’]
ClassParam ::= [{Modifier} ‘val’] Param
Bindings ::= id [‘:’ Type1]

| ‘(’ Binding {‘,’ Binding ‘)’
Binding ::= id [‘:’ Type]

Modifier ::= LocalModifier
| private
| protected
| override

LocalModifier ::= abstract
| final
| sealed

AttributeClause ::= ‘[’ Attribute {‘,’ Attribute} ‘]’
Attribute ::= Constr

Template ::= Constr {‘with’ Constr} [TemplateBody]
TemplateBody ::= ‘{’ [TemplateStat {‘;’ TemplateStat}] ‘}’
TemplateStat ::= Import

| {AttributeClause} {Modifier} Def
| {AttributeClause} {Modifier} Dcl
| Expr
|

Import ::= import ImportExpr {‘,’ ImportExpr}
ImportExpr ::= StableId ‘.’ (id | ‘_’ | ImportSelectors)
ImportSelectors ::= ‘{’ {ImportSelector ‘,’}

(ImportSelector | ‘_’) ‘}’
ImportSelector ::= id [‘=>’ id | ‘=>’ ‘_’]

Dcl ::= val ValDcl
| var VarDcl
| def FunDcl
| type TypeDcl

ValDcl ::= id {‘,’ id} ‘:’ Type
VarDcl ::= id {‘,’ id} ‘:’ Type
FunDcl ::= FunSig {‘,’ FunSig} ‘:’ Type
FunSig ::= id [FunTypeParamClause] {ParamClause}

253

TypeDcl ::= id [>: Type] [<: Type]

Def ::= val PatDef
| var VarDef
| def FunDef
| type TypeDef
| TmplDef

PatDef ::= Pattern2 {‘,’ Pattern2} [‘:’ Type] ‘=’ Expr
VarDef ::= id {‘,’ id} [‘:’ Type] ‘=’ Expr

| id {‘,’ id} ‘:’ Type ‘=’ ‘_’
FunDef ::= FunSig {‘,’ FunSig} ‘:’ Type ‘=’ Expr

| this ParamClause ‘=’ ConstrExpr
TypeDef ::= id [TypeParamClause] ‘=’ Type

TmplDef ::= ([case] class | trait) ClassDef
| [case] object ObjectDef

ClassDef ::= ClassSig {‘,’ ClassSig} [‘:’ SimpleType] ClassTemplate
ClassSig ::= id [TypeParamClause] [ClassParamClause]
ObjectDef ::= id {‘,’ id} [‘:’ SimpleType] ClassTemplate

ClassTemplate ::= extends Template
| TemplateBody
|

ConstrExpr ::= this ArgumentExprs
| ‘{’ this ArgumentExprs {‘;’ BlockStat} ‘}’

CompilationUnit ::= [package QualId ‘;’] {TopStat ‘;’} TopStat
TopStat ::= {AttributeClause} {Modifier} TmplDef

| Import
| Packaging
|

Packaging ::= package QualId ‘{’ {TopStat ‘;’} TopStat ‘}’
QualId ::= id {‘.’ id}

Chapter B

Implementation Status

The present Scala compiler does not yet implement all of the Scala specification. Its
currently existing omissions and deviations are listed below. We are working on a
refined implementation that addresses these issues.

1. Unicode support is still limited. At present we only permit Unicode encod-
ings \uXXXX in strings and backquote-enclosed identifiers. To define or access
a Unicode identifier, you need to put it in backquotes and use the \uXXXX en-
coding.

2. The unicode operator “⇒” (§16.1) is not yet recognized; you need to use the
two character ASCII equivalent “=>” instead.

3. The current implementation does not yet support run-time types. All types
are erased (§18.6) during compilation. This means that the following opera-
tions give potentially wrong results.

• Type tests and type casts to parameterized types. Here it is only tested
that a value is an instance of the given top-level type constructor.

• Type tests and type casts to type parameters and abstract types. Here it
is only tested that a value is an instance of the type parameter’s upper
bound.

• Polymorphic array creation. If t is a type variable or abstract type, then
new Array[t] will yield an array of the upper bound of t.

4. Return expressions are not yet permitted inside an anonymous function or
inside a call-by-name argument (i.e. a function argument corresponding to a
def parameter).

5. Members of the empty package (§24.1) cannot yet be accessed from other
source files. Hence, all library classes and objects have to be in some pack-
age.

256 Implementation Status

6. At present, auxiliary constructors (§20.2.1) are only permitted for monomor-
phic classes.

7. The Array class supports as yet only a restricted set of operations as given in
§27.3.4. It is planned to extend that interface. In particular, arrays will im-
plement the scala.Seq trait as well as the methods needed to support for-
comprehensions.

8. At present, all classes used as mixins must be accessible to the Scala compiler
in source form.

	I Rationale
	II Scala by Example
	A First Example
	Programming with Actors and Messages
	Expressions and Simple Functions
	Expressions And Simple Functions
	Parameters
	Conditional Expressions
	Example: Square Roots by Newton's Method
	Nested Functions
	Tail Recursion

	First-Class Functions
	Anonymous Functions
	Currying
	Example: Finding Fixed Points of Functions
	Summary
	Language Elements Seen So Far

	Classes and Objects
	Case Classes and Pattern Matching
	Case Classes and Case Objects
	Pattern Matching

	Generic Types and Methods
	Type Parameter Bounds
	Variance Annotations
	Lower Bounds
	Least Types
	Tuples
	Functions

	Lists
	Using Lists
	Definition of class List I: First Order Methods
	Example: Merge sort
	Definition of class List II: Higher-Order Methods
	Summary

	For-Comprehensions
	The N-Queens Problem
	Querying with For-Comprehensions
	Translation of For-Comprehensions
	For-Loops
	Generalizing For

	Mutable State
	Stateful Objects
	Imperative Control Structures
	Extended Example: Discrete Event Simulation
	Summary

	Computing with Streams
	Iterators
	Iterator Methods
	Constructing Iterators
	Using Iterators

	Combinator Parsing
	Simple Combinator Parsing
	Parsers that Produce Results

	Hindley/Milner Type Inference
	Abstractions for Concurrency
	Signals and Monitors
	SyncVars
	Futures
	Parallel Computations
	Semaphores
	Readers/Writers
	Asynchronous Channels
	Synchronous Channels
	Workers
	Mailboxes
	Actors

	III The Scala Language Specification Version 1.0
	Lexical Syntax
	Identifiers
	Braces and Semicolons
	Literals
	Whitespace and Comments
	XML mode

	Identifiers, Names and Scopes
	Types
	Paths
	Value Types
	Singleton Types
	Type Projection
	Type Designators
	Parameterized Types
	Compound Types
	Function Types

	Non-Value Types
	Method Types
	Polymorphic Method Types

	Base Classes and Member Definitions
	Relations between types
	Type Equivalence
	Conformance

	Type Erasure
	Implicit Conversions

	Basic Declarations and Definitions
	Value Declarations and Definitions
	Variable Declarations and Definitions
	Type Declarations and Type Aliases
	Type Parameters
	Function Declarations and Definitions
	Overloaded Definitions
	Import Clauses

	Classes and Objects
	Templates
	Constructor Invocations
	Base Classes
	Evaluation
	Template Members
	Overriding
	Modifiers
	Attributes

	Class Definitions
	Constructor Definitions
	Case Classes

	Traits
	Object Definitions

	Expressions
	Literals
	Designators
	This and Super
	Function Applications
	Type Applications
	References to Overloaded Bindings
	Instance Creation Expressions
	Blocks
	Prefix, Infix, and Postfix Operations
	Typed Expressions
	Method closures
	Assignments
	Conditional Expressions
	While Loop Expressions
	Do Loop Expressions
	Comprehensions
	Return Expressions
	Throw Expressions
	Try Expressions
	Anonymous Functions
	Statements

	Pattern Matching
	Patterns
	Regular Pattern Matching

	Pattern Matching Expressions

	Views
	View Definition
	View Application
	Finding Views
	View-Bounds
	Conditional Views

	Top-Level Definitions
	Packagings

	Local Type Inference
	XML expressions and patterns
	XML expressions
	XML patterns

	The Scala Standard Library
	Root Classes
	Value Classes
	Class [flexiblecolumns=true,basicstyle=]£Double£
	Class [flexiblecolumns=true,basicstyle=]£Float£
	Class [flexiblecolumns=true,basicstyle=]£Long£
	Class [flexiblecolumns=true,basicstyle=]£Int£
	Class [flexiblecolumns=true,basicstyle=]£Short£
	Class [flexiblecolumns=true,basicstyle=]£Char£
	Class [flexiblecolumns=true,basicstyle=]£Short£
	Class [flexiblecolumns=true,basicstyle=]£Boolean£
	Class [flexiblecolumns=true,basicstyle=]£Unit£

	Standard Reference Classes
	Class [flexiblecolumns=true,basicstyle=]£String£
	The [flexiblecolumns=true,basicstyle=]£Tuple£ classes
	The [flexiblecolumns=true,basicstyle=]£Function£ Classes
	Class [flexiblecolumns=true,basicstyle=]£Array£

	The [flexiblecolumns=true,basicstyle=]£Predef£ Object
	Class Node

	Scala Syntax Summary
	Implementation Status

