Scala and AsmL side by side

Stéphane Micheloud

Programming Methods Laboratory
Swiss Federal Institute of Technology Lausanne
INR Ecublens, 1015 Lausanne, Switzerland

stephane.micheloud®@epfl.ch

May 29, 2003
Revisited, August 19, 2005*

Abstract

Abstract state machines (ASMs) describe the dynamic behavior of com-
plex systems in an intuitive and mathematically precise way. ASML is an
advanced ASM-based modeling and programming language. It provides a
modern specification environment that is object-oriented and component-
based.

We present a brief comparison of the features of ASML and their coun-
terpart in SCALA, a general purpose programming language which com-
bines object-oriented, functional and concurrent elements.

1 Introduction

In this paper we intend to determine to which extent the general-purpose lan-
guage SCALA may be used instead of the domain-specific language ASML to
implement executable ASM-based models.

1.1 AsmL

AsML is a specification language based on Gurevich’s abstract state machines
(ASM) [1, 5]. Specifications written in ASML can be run as programs and
are also called executable specifications. In contrast to the sequential execu-
tion model used by most programming languages AsML favors parallelism by
default.

AsML can be used to faithfully capture the abstract structure and step-wise
behaviour of any discrete system, including very complex ones such as integrated
circuits, software components and devices that combine both hardware and
software.

AsML includes a state-of-the-art type system with extensive support for
type parameterization and type inference. Using clear semantics, it provides
a unified view of classes used for object-oriented programming, in addition

*Updated to reflect changes in the language specification of ScALA and/or AsML

to structured data types. It supports mathematical set operations - such as
comprehension and quantification - that are useful for writing high-level speci-
fications.

Unlike most popular programming languages ASML is non-deterministic.
Non-deterministic systems exhibit two characteristics: there is a finite set of
possibilities (i.e. states) and the result may be any value within that set.

Apart from AsML source files written either in plain text or in XML format
the AsML compiler also accepts C# source files so that an ASML program may
consist of AsML or C# code. But note that nearly everything we can do in
C# can also be done directly in AsML, accessing the .NET framework libraries.

AsML is being developed at Microsoft Research (MSR) in Redmond by
the Foundations of Software Engineering (FSE) group under the supervision
of Dr. Yuri Gurevich. The language is bootstrapped, i.e. compiler and other
tools are written in AsML itself. The AsML compiler is available on the .NET
platform! which is based on the Microsoft’s Common Language Runtime (CLR)
and generates a standalone executable (.exe).

1.2 Scala

SCALA is both an object-oriented and functional language. It is a pure object-
oriented language in the sense that every value is an object. Types and behavior
of objects are described by classes. Classes can be composed using mixin com-
position. SCALA is designed to interact well with mainstream object-oriented
languages, in particular JAVA and C#.

SCALA is also a functional language in the sense that every function is a
value. Nesting of function definitions and higher-order functions are naturally
supported. SCALA also supports a general notion of pattern matching which can
model together with case classes the algebraic types used in many functional
languages. Furthermore, this notion of pattern matching naturally extends to
the processing of XML data.

Type parametrization, type inference and type covariance are some of the
advanced features supported by the SCALA type system.

SCALA is being developed at the Programming Methods Laboratory
(LAMP) of the Swiss Institute of Technology Lausanne (EPFL) under the su-
pervision of Prof. Martin Odersky [7]. The current SCALA compiler is written
partly in SCALA itself and partly in PiCo [10], a JAVA extension supporting al-
gebraic types. The SCALA compiler is available on any JAVA platform? (actually
version 1.4 or newer) and generates JAVA bytecode.

!The AsML software is available from http://research.microsoft.com/fse/asml/
2The SCALA software is available from http://scala.epfl.ch/

2 Getting Started

For the purpose of this comparison we will use version 2 of AsML [3] and the
development version of SCALA [7] for coding the examples! presented in this
paper. Most of them have been adapted from [3] and [8].

2.1 Hello World

Let us consider the well-known Hello World program as our first example.
In AsML the rule Main() constitutes the entry point of any AsML Windows
console application.

Main()
WriteLine("Hello World!")

As Haskell and a few other languages ASML uses indentations to denote
block structure, and blocks can be nested (AsML does not recognize tabs, so
don’t use the tab character for indentations). Multiple instructions inside a
block are separated by carriage returns. In our example WriteLine is an ex-
ternal operation which simply prints a string without changing any state. By
convention of Microsoft’s CLR the names of all types and methods provided by
the AsMmL 2 library are capitalized.

In ScALA the special method main(args: Array[String]l): Unit con-
stitutes the entry point of any SCALA program. The args parameter gives
access to the program arguments as in JAVA or C#.

object Hello {
def main(args: Array[Stringl]): Unit = {
System.out.println("Hello World")
}
}

As C-like languages SCALA uses curly braces ("{” and ”}”) to indicate
blocks. In SCALA braces may be left out if the block contains only one expres-
sion. Multiple expressions inside a block are separated by semicolons. Note
that we use the JAVA static function println(String s) to print out a string
on the standard output; indeed a SCALA program can access any Java library.

2.2 Sorting

We now consider a very simple specification of a one-swap-at-a-time sorting
algorithm. We don’t use global variables as in the original AsML example [8]
as they are not allowed in SCALA (idem for methods). Again we present here
the two programs in ASML and SCALA.

Swap(s as Seq of Integer) as Seq of Integer

'The code samples presented in this paper were all compiled using version 2.2 of
Microsoft T™M AsML on Microsoft Windows XP and version 1.4.0.0 of ScALA on Fedora Core
3; they can be obtained from the author as a separate archive file (including makefiles).

var A = s
step choose i in Indices(A),
j in Indices(A) where i < j and A(i) > A(j)
A(§) := A(D)
AG) = AP
step return A

Sort(s as Seq of Integer) as Seq of Integer
var A = s
step until fixpoint A := Swap(A)
step return A

Main()
WriteLine(Sort([1,4,7,3,5]))

The keyword step marks the transition for one state to another. The notion
of state plays a central role in AsML and we will take a closer look on it in
section 6. The := operator in ASML is used to update variables; all updates
given within a single step occur simultaneously at the end of the step. The
choose operator picks a pair of elements from a list in a non-deterministic way.
step until fixpoint precedes a block of statements that will be repeatedly
run until no changes result. A fixpoint occurs when two consecutive states are
equal.

The same result can be achieved in SCALA using functions. By the way this
example illustrates the fact that literally rewriting code is generally not the
best choice for providing a good solution in a different language.

object Sort {

import AsmL._;
def sort(xs: List[Int]) = {
def swap(xs: List[Int]) = {

val ys = for (
val i <- xs.indices;
val j <- xs.indices;
(1 < j) && xs(1) > xs(j))
yield Pair(i, j);
if (ys.isEmpty)
XS
else {
val Pair(inx1l, inx2) = choose(ys); // ys.head;
swaplist(xs, inxl, inx2)
}
}
fixpoint(xs, swap)

}

def main(args: Array[String]) =
Console.println(sort(List(1, 4, 7, 3, 5)));

The for/yield construct in SCALA takes a list of generators and filters and
returns a list of elements satisfying the specified constraints.

For convenience the functions indices, choose, swaplist and fixpoint
are defined in a separate SCALA module named AsmL and are imported using
a JAvA-like import directive. choose(ys) simply picks an arbitrary pair of
elements from the list ys and the same result can be achieved in a deterministic
way writing ys.head.

Unlike in AsML sequences in SCALA are immutable so we need the function
swaplist to swap two elements of a list.

For the sake of completeness we present here one possible implementation
of AsmL:

object AsmL {
import scala.collection.mutable._;
private val rand = new java.util.Random(System.currentTimeMillis());
def indices[A] (xs: Array[A]) = List.range(0, xs.length);

def fixpoint[A]l(x: A, f: A => A, eq: (A, A) => Boolean) = {
def iterate(oldX: A, newX: A): A =
if (eq(oldX, newX)) newX else iterate(newX, f(newX));
iterate(x, f(x))
}

def fixpoint[A]l(x: A, f: A => A): A = fixpoint(x, £, (x: A, y: A) => x == y);

def fixpoint(x: Array[Int], f: Array[Int] => Array[Int]) = {
def iterate(x: Array[Int]): Array[Int] = {
var newX = new Array[Int] (x.length);
for (val i <- indices(newX)) { newX(i) = x(i) };
f (newX) ;
if (java.util.Arrays.equals(x, newX)) newX else iterate(newX) ;
}
iterate(x)

}

def min[A] (less: (A, A) => Boolean, xs: List[A]): Option[A] = xs match {
case List() => None

case x :: Nil => Some(x)
case y :: ys => min(less, ys) match {
case Some(m) => if (less(y, m)) Some(y) else Some(m)
}
}

def choosela] (xs: List[al): a = xs(rand.nextInt(xs.length));

def swaplist([a] (xs: List[al, i: Int, j: Int): List[a] = {
def aux(xsl: List[a], k: int): List[a] = xs1 match {
case Nil => Nil
case y :: ys =>
(1if (k == i) xs(j)
else if (k == j) xs(i)
else y) :: aux(ys, k + 1)
}
if A==3j Il i<0 ||l i> xs.length || j <O || j > xs.length)
XS
else
aux(xs, 0)

}

trait Ensure[A] {
def ensure(postcondition: A => Boolean): A

3

def require[A] (precondition: => Boolean) (command: => A): Ensure[A] =
if (precondition)
new Ensure[A] {
def ensure(postcondition: A => Boolean): A = {
val result = command;
if (postcondition(result)) result
else error("Assertion error")
}
}
else
error ("Assertion error");

def Map[A, B] (elems: Pair[A, Bl*): Map[A, B] = {
val map = new HashMap[A, B]; map ++= elems; map

}

def Map[A, Bl (elems: Iterable[Pair[A, B]]): Map[A, B] = {
val map = new HashMap[A, B]; map ++= elems; map

}

def Set[A] (elems: Ax): Set[A] = {
val set = new HashSet[A]; set ++= elems; set

}

def Set[A] (elems: Iterable[A]): Set[A] = {
val set = new HashSet[A]; set ++= elems; set

}

Inorder to initialize the random seed we simply call the static function
currentTimeMillis() of the standard JAvA library.

3 Predefined Datatypes

The primitive built-in datatypes both in SCALA and ASML are numbers, char-
acters and truth values.

The main built-in composite datatypes in ASML are strings, enumerations,
sets, sequences, maps and tuples. Unlike ASML composite datatypes in SCALA
are not built in the language, but are parts of SCALA (or JAVA) libraries or are
user-defined.

For a detailed list of predefined types see tables 3 and 4 in the appendix.

Here are some examples of declarations:

class Frame

Main()
weekDays as Set of String = {"Mon", "Tue", "Wed", "Thu", "Fri"}
directory as Map of String to Integer =
{"emergency" -> 911, "info" -> 411}
interval = [1..9]
framel = new Frame
frame2 = new Frame
frame3 = new Frame
stack as Seq of Frame = [framel, frame2, frame3]
nameAndAge as (String, Integer) = ("Pythagoras", 2582)

step WriteLine(interval(1))
step WriteLine(directory("info"))
step WriteLine(directory("hotline"))

Listing 1: Composites.asml

Similar to arrays in most languages sequences in ASML and SCALA are zero-
based, so the element at index 1 has the value 2. The last line code generates
a runtime exception as shown below:

2
411

Unhandled Exception: Microsoft.AsmL.IndexOutOfBoundsException: hotline
at Microsoft.AsmL.Map.get_item(Object d)
at Application._GLOBAL_.Main() in ...\Composites.asml:line 17
We will present the handling of runtime exceptions in section 8.
object Composites {
import scala.collection.mutable._;
class Frame;
def main(args: Array([String]) = {

val weekDays : Set[String] = AsmL.Set("Mon", "Tue", "Wed", "Thu", "Fri");
val directory: Map[String, Int] =

AsmL.Map(Pair("emergency", 911), Pair("info", 411));

val interval = List.range(1l, 10);
val framel, frame2, frame3 = new Frame;
val stack: Seq[Frame] = List(framel, frame2, frame3);
val nameAndAge: Pair[String, Int] = Pair("Pythagoras", 2582);

Console.println(interval(1l));
Console.println(directory("info"));
Console.println(directory("hotline"))

Listing 2: Composites.scala

The example in SCALA behaves the same way:

2
411
Exception in thread "main" java.lang.RuntimeException: key not found
at scala.Predef$.error(sources/scala/Predef.scala:32)
at scala.collection.mutable.Map$class.apply(.../mutable/Map.scala:37)
at Composites$.main(src/Composites.scala:31)
at Composites.main(src/Composites.scala)

4 Function Definitions

AsML makes a distinction between functions and procedures. Conceptually,
functions make no updates to global or instance variables while procedures
may or may not perform updates. Functions must return a value; procedures
may return a value. The keywords function and procedure are optional, in
which case a function is assumed.

Here is an example both in AsML and in SCALA.

Square(x as Integer) as Integer return x * x

Max(i as Integer, j as Integer) as Integer
return (if i > j then i else j)

Max(s as Seq of Integer) as Integer or Null
if s = [] then return null
else return (any m | m in s where not (exists n in s where n > m))

Main()
step WriteLine(Square(5))
step WriteLine(Max(2, 3))
step WriteLine(Max([1, 8, 2, 12, 13, 6]))

All method arguments and return values are passed by value.

object Funcs {
def square(x: Int): Int = x * x;
def max(i: Int, j: Int): Int = if (i > j) i else j;

def max(s: List[Int]): Option[Int] =
if (s.isEmpty) None
else Some((for (val m <- s; ! (s exists (u => n > m))) yield m) .head);

def main(args: Array[Stringl): Unit = {
Console.println(square(5));
Console.println(max(2, 3));
Console.println(max(List(1, 8, 2, 12, 13, 6)))
}

ScALA supports local type inference so the return type of the functions
square, max and main can be left out here. SCALA also supports lazy evaluation
of function arguments and anonymous functions.

Functions in ASML may contain both pre- and post-conditions; the require
and ensure statements document constraints placed upon the model. Violating
a constraint at runtime is called an assertion failure and indicates a modeling
error. In a post-condition the name result refers to the value of the block
which contains the pre- and post-conditions.

function Arb(s as Seq of Integer) as Integer
require s <> []
ensure result in s
return Head(s)

procedure Main()

step

s =[1, 2, 3]

WriteLine("s = " + s + ", Arb(s) = " + Arb(s))
step

e as Seq of Integer = []

WriteLine("e = " + e + ", Arb(e) = " + Arb(e))

The first call to WriteLine prints out s = {1, 2, 3}, arb(s) = 1 and
the second throws an AssertionFailedException exception.

In ScALA it is the responsability of the programmer to ensure that both
conditions are checked at the right place.

A first possibility would be to mimic that AsML construct using two poly-
morphic functions require and ensure. A more straight-forward way for check-
ing pre- and postconditions is to use an assert function as in JAVA.

object Assertions {

import AsmL._;

def arblal (s: List[a]) =
require (! s.isEmpty) {
s.head
} ensure (result => s contains result);

def assert(cond: Boolean) =
if (! cond) error("Assertion error");

def arbi[al(s: List[a]) = {
assert(! s.isEmpty);
val result = s.head;
assert(s contains result);
result

}

def main(args: Array[String]) = {
val s = List(1, 2, 3);
Console.println(arb(s));
Console.println(arbi(s));

val e: List[Int] = List();
Console.println(arb(e));
Console.println(arbi(e))

5 Advanced Logic Operators

ScALA and AsML have both existential and universal quantifiers for collection
types such as sets, sequences or maps. The variable range can be restricted by
means of constraints.

Main()
N = 100
s = {1..N}

step WriteLine(exists x in s where x * x = 16)
step WriteLine(forall y in s holds y >= 6)

The output result is true respectively false.

object Logics {
def main(args: Array([Stringl) = {
val N = 100;
val s = List.range(1, N+1);

Console.println(s exists (x => x * x == 16));

Console.println(s forall (y => y >= 6))
}

10

Set comprehension generalizes naturally to sequences and maps. Compre-
hension means that you can state all the properties that characterize the ele-
ments of a set rather than list them explicitly.

Here is the quicksort algorithm both in AsML and in SCALA.

gsort(s as Seq of Integer) as Seq of Integer
if s = [] then
return []
else
pivot = Head(s)
rest = Tail(s)
return gsort([y | y in rest where y < pivot])
+ [pivot]
+ gsort([y | y in rest where y >= pivot])

Main()
WriteLine(gsort([1,4,7,3,5]))

AsML and ScALA implementations for the quicksort algorithm look very
similar. AsML has the functions Head and Tail for accessing elements in lists
and the operator + for concatenating lists.

object QuickSort {
import AsmL._;

def gsort(a: List[Int]): List[Int] = {
if (a.isEmpty)
List()
else {
val pivot = a.head;
val rest = a.tail;
gsort(for (val y <- rest; y < pivot) yield y)
:: List(pivot)
:: gsort(for (val y <- rest; y >= pivot) yield y)
}
}

def main(args: Array[String]) =
Console.println(gsort(List(1, 4, 7, 3 , 5)));

}
In the same manner the SCALA class List defines the functions head and
tail for accessing elements in lists and the operator ::: for concatenating
lists.

6 Variables and State

Both AsML and SCALA programs use variables to specify their state. But in
contrast to other programming languages such as C, JAVA or SCALA where

11

changes take place immediately and in sequential order, all changes in AsML
happen simultaneously, when you move from one step to another. Then, all the
updates happen at once. This is called an atomic transaction.

var x = 0
Main()
step
WriteLine("In the first step, x = " + x)
step
x =2
WriteLine("In the second step, x = " + x)
step
WriteLine("In the third step, x = " + x)

The variable x is updated during the transition from step 2 to step 3.

In the first step, x = 0
In the second step, x = 0
In the third step, x = 2

Here is an example to compute the lengths of all shortest paths in a graph
from a given node s to any node.

Shortest(s as Node, // start node
nodes as Set of Node,
edges as Map of (Node, Node) to Integer) as Map of Node to Integer
var S = {s > 0}
step until fixpoint
forall n in nodes where n <> s
E = {S(m) + edges(m, n) | m in nodes where m in S and (m, n) in edges?}
if Size(E) > O then S(n) :=min x | x in E

step
return S
Main()
a = Node("A")
b = Node("B")
¢ = Node("C")
d = Node("D")

nodes = {a, b, c, d}
edges = {(a, b) -> 10, (a, ¢) -> 15, (b, &) —> 12, (c, d) -> 6%}

WriteLine(Shortest(a, nodes, edges))

The output result is {C->15, D->21, A->0, B->10} where the token ”->"
is called the maplet operation in AsML.

object Shortest {
import AsmL._;

import scala.collection.mutable._;

12

def shortest(s: Node, // start mnode
nodes: Set[Node],
edges: Map[Pair[Node, Node], Int]): Map[Node, Int]

I
-~

val sO = Pair(s, 0);
def min(xs: List[Int]) = AsmL.min((x: Int, y: Int) => x <y, xs);

def improve(ss: Map[Node, Int]): Map[Node, Int] = {
AsmL.Map(sO :: (for (
val n <- nodes.tolList;
n != s;
val dist <- min(for (
val m <- nodes.tolList;
val d <- ss.get(m).tolist;
val e <- edges.get(Pair(m, n)).toList
) yield (d + e)).tolList
) yield Pair(n, dist)
)
}

fixpoint (AsmL.Map(sO), improve)

def main(args: Array[Stringl) = {
val a = Node("A"); val b = Node("B");
val ¢ = Node("C"); val d = Node("D");
val nodes = AsmL.Set(a, b, c, d);
val edges = AsmL.Map(
Pair(Pair(a, b), 10), Pair(Pair(a, c), 15),
Pair(Pair(b, d), 12), Pair(Pair(c, d), 6));

Console.println(shortest(a, nodes, edges));

The functional style is the natural way to express algorithms in SCALA and
it allows us to do without any state variable.

13

7 Structures, Classes and Interfaces

An AsMmL structure is similar to a struct in C, except it is a pure value: once
created, its value is fixed. Thus structures contain constant fields and do not
share memory. Like unions in C structures may incorporate case statements as
a way of organizing different variant forms.

Classes in AsML have many similarities to those in other languages. They
are templates for user-defined types that can contain both fields and methods.
AsML allows classes and interfaces to be constructed modularly. All definitions
are textually concatenated. Each modular piece can contain methods as well
as member variables.

class Person
private name as String
var age as Integer
public override function ToString() as String?
return "name=" + name + ", age=" + age

Main()
paul = new Person("Paul", 25)
step WriteLine(paul)
step paul.age := 24
step WriteLine(paul.age)

And here is the same example in SCALA.

class Person(name: String, _age: Int) {
var age = _age;
override def toString() = "name=" + name + ", age=" + age;

}

object Main {
def main(args: Array[String]) = {
val paul = new Person("Paul", 25);
Console.println(paul) ;
paul.age = 24;
Console.println(paul.age)
}
}

In AsML and SCALA an instance of a class is created using the new operator
in front of the class name and supplying values for the specified fields.

While AsmL and ScALA both support single class inheritance, SCALA also
allows multiple-inheritance of mixins. Methods may be specialized by derived
classes using the override keyword.

interface Expr
Eval() as Integer

structure ValExpr implements Expr
val as Integer

14

public Eval() as Integer return val

class AddExpr implements Expr
lhs as Expr
rhs as Expr
public Eval() as Integer return lhs.Eval() + rhs.Eval()

Eval(e as Expr) as Integer
match e
ValExpr(v) : return v
AddExpr(1, r): return Eval(l) + Eval(r)

Main()
three = ValExpr(3)
four = ValExpr(4)

seven = new AddExpr(three, four)
step WriteLine(seven.Eval())
step WriteLine(Eval(seven))

Defining Eval() as an instance method implemented by each expression
variant is typical for the object-oriented style where behavior is associated with
data.

Both AsML and SCALA support patterns to decompose a value into its
constituent parts using syntax that mirrors the value’s constructor. Patterns
are used for matching, the process of testing whether the constructor of a given
value has the same form as a given pattern, and for binding, the process of
associating an identifier with a value.

Patterns in ASML can be literals, identifiers, tuples, enumerations, struc-
tures and classes. The universal pattern (”_") can be matched against any value
but does not result in a new binding of a name to a value.

Patterns are supported in SCALA in a similar way for any types.

This is illustrated in our example by the second WriteLine instruction of
the program.

trait Expr {
def eval: Int;
}

case class ValExpr(x: Int) extends Expr {
def eval: Int = x;

}

case class AddExpr(lhs: Expr, rhs: Expr) extends Expr {
def eval: Int = lhs.eval + rhs.eval;

}

object Exprs {
def eval(e: Expr): Int = e match {
case ValExpr(v) = v
case AddExpr(1l, r) => eval(l) + eval(r)
}

15

def main(args: Array[String]) = {
val three = ValExpr(3);
val four ValExpr(4);
val seven = AddExpr(three, four);
Console.println(seven.eval) ;
Console.println(eval(seven))

8 Exception Handling

AsML supports exception handling with try/catch expressions. An exception
can be generated explicitly using an expression of the form throw exp, where
exp evaluates to a reference of an object that is derived from System.Exception
class, or it may arise from a runtime event such as a divide-by-zero error. The
expression error exp can be used to express an unrecoverable error and may be
used in any statement context. Errors may not be processed by any exception
handler.

We modify here the example presented in listing 1 inorder to handle the
thrown exception at runtime.

Main()
directory = {"emergency" -> 911, "info" -> 411}

step WriteLine(directory("info"))
step
try
WriteLine(directory("hotline"))
catch
e: WriteLine("key not found")

We now get the following output:

411
key not found

Exceptions in SCALA are handled in a similar manner using the try/except
expressions. An exception can be generated explicitly using an expression of the
form exp.throw, where exp evaluates to a reference of an object that is derived
from java.lang.RuntimeException class, or it may arise from a runtime event
such as a divide-by-zero error. The expression error(exp) can be used to
express an unrecoverable error and may be used in any statement context.
Unlike in ASML errors in SCALA can be processed by an exception handler.

In a similar manner we modify the example from listing 2:

object Composites {

import AsmL._;

16

def main(args: Array[String]) = {
val directory = Map(Pair("emergency", 911), Pair("info", 411));

Console.println(directory("info"));
try {
Console.println(directory("hotline"));
} catch {
case e: Exception => Console.println("key not found")
}
}

And we get the same output with SCALA:

411
key not found

Both AsMmL and ScALA also support user-defined exceptions.

class CubeException extends AsmLRuntimeException
str as String

CubeException(s as String)
str = s

Describe() as String
return "Cube Exception: " + str

structure Side
teeth as Seq of Boolean
Side(ts as Seq of Boolean)
teeth = side_constraint(ts)
shared side_constraint(bs as Seq of Boolean) as Seq of Boolean
if bs.Length gt 2
return bs
else
throw new CubeException("Side constraint violated")

Main()
step WriteLine(Side([true, true, false, truel))
step WriteLine(Side([true, truel))
The second instruction in Main() generates the following exception:
Side(teath=[True, True, False, True])
Unhandled Exception: Application.CubeException: Exception in type
Application.CubeException was thrown.

at Application.Side.side_constraint_Boolean(Seq bs) in ...\Exceptions.asml:line 28
at Application._GLOBAL_.Main() in ...\Exceptions.asml:line 32

17

And here is the same example written in SCALA:

class CubeException(s: String) extends java.lang.RuntimeException(s) {
override def getMessage() = "Cube Exception: " + s;

}

object Side0 {
def side_constraint(bs: List[Boolean]) =
if (bs.length < 3) throw new CubeException("Side constraint violated");
}

case class Side(ts: List[Boolean]) {
Side0.side_constraint(ts);

}

object Exceptions {
def main(args: Array([Stringl) = {
Console.println(Side(List(true, true, false, true)));
Console.println(Side(List(true, true)))
}
}

Again we observe a similar behavior in SCALA:

Side(List(true,true,false,true))
Exception in thread "main" CubeException$class: Cube Exception: Side constraint violated
at Side0$.side_constraint(src/Exceptions.scala:18)
at Side$class.<init>(src/Exceptions.scala:22)
at Exceptions$.main(src/Exceptions.scala:29)
at Exceptions.main(src/Exceptions.scala)

18

9 (Generics

AsML and SCALA both support generics. Generics - also commonly known as
parametrized types - are useful because many common classes and interfaces can
be parametrized by the type of the data being stored and manipulated. Methods
may also be parametrized by type inorder to implement ”generic algorithms”.

In the example below we create a Stack generic class declaration where we
specify a type parameter, called T, using the of keyword.

class Stack of T
private var s as Seq of T = []
Push(data as T) s := [data] + s
Pop() as T
if Size(s) <= O then
error "Pop(): empty stack error"
else
head = Head(s)
s := Tail(s)
return head
Top() as T
if Size(s) <= O then
error "Top(): empty stack error"
else
return Head(s)
Size() as Integer return Size(s)
public override ToString() as String? return s.ToString()

PushMultiple of T (stack as Stack of T, s as Seq of T)
step foreach x in s
stack.Push(x)

Main()
stack = new Stack of Integer
step stack.Push(3)
step stack.Push(1)
step PushMultiple(stack, [2, 5])

step WriteLine("stack = " + stack)

step WriteLine("stack.Pop() = " + stack.Pop())
step WriteLine("stack.Top() = " + stack.Top())
step WriteLine("stack.Size() = " + stack.Size())

The output result is:

stack = [5, 2, 1, 3]
stack.Pop() =5
stack.Top() = 2
stack.Size() = 3

The declaration of the constant object stack in the Main() function is the
only place where we need to specify an explicit type parameter.
In SCALA the type parameter list - which consists of one parameter a in our

19

example - is declared in square brackets and follows the class name in a class
declaration (idem for generic function declarations):

class Stack[T] {
private var s: List[T] = ListQ);
def push(data: T) = s = data :: s;
def pop = s match {

case Nil => error("pop: empty stack error")
case h :: t=>s=1t; h
}
def top = s match {
case Nil => error("top: empty stack error")
case h :: t =>h
}
def size = s.length;
override def toString() = s.mkString("[", ", ", "1");
}

object Main {
def pushMultiple[T] (stack: Stack[T], s: List[T]) =
s foreach { x => stack.push(x) };

def main(args: Array[String]) = {
val stack = new Stack[Int];
stack.push(3);
stack push 1; // infiz notation
pushMultiple(stack, List(2, 5));

Console.println("stack = " + stack);

Console.println("stack.pop = " + stack.pop);

Console.println("stack.top = " + stack.top);

Console.println("stack.size = " + stack.size)
}

As practical advantages generics increase the programmer productivity by
promoting code reuse, improve code robustness by allowing static type-checking
and increase program performance by reducing needed checks at runtime.

20

10 Conclusion

AsML and SCALA are both strongly-typed languages. SCALA is a concise lan-
guage, its syntax is small (37 vs. 49 keywords in JAVA [6] vs. 76 in C#) unlike
AsML which contains about three times more keywords. SCALA is a general-
purpose language and it’s not a surprise that AsML code is more compact than
SCALA code for domain-specific applications.

The integration of each language with a mainstream programming environ-
ment - Microsoft’s CLR for AsML and Sun’s JvM for SCALA should increase its
applicability and acceptance; in particular it makes possible to develop hybrid
applications that blend different programming paradigms into a single, cohesive
unit.

One important point about programming languages is that stability, per-
formance, and comprehensiveness of the library contributes as much to overall
productivity as the language itself. ASML and SCALA are still under develop-
ment and SCALA has not yet reached the same level of maturity as AsML, in
particular concerning stability and performance.

The strengths of the AsML are:

- The AsMmL language is developed by the same people who made the ASM
specification. In particular the non-determinism of ASML contrasts to
the sequential execution model used by most programming languages in-
cluding SCALA.

- Programming in AsML is served by powerful development tools. The
AsML compiler accepts both C# and AsML source files and provides
XML/Word integration. The AsSML Test Generator tool is an integrated
test generation environment. It can be used to automatically generate test
cases from an AsML model using various algorithms, and to use such test
cases to perform a conformance test against an actual implementation.

The strengths of the SCALA are:

- SCALA is a multi-paradigm programming language designed to express
common programming patterns in a consise, elegant, and type-safe way. It
smoothly integrates features of object-oriented and functional languages.

- SCALA provides a unique combination of language mechanisms that make
it easy to smoothly add new language constructs in form of libraries (i.e.
any method may be used as an infix or postfix operator and closures are
constructed automatically depending on the expected type).

For the sake of compactness this paper does not cover some interesting
feature of ASML and SCALA such as type systems (i.e. type inference, abstract
types and covariance of collection types) and support for concurrency.

As a complement to this brief comparison between ASML and SCALA we
present some key features of the two languages in the appendix (Table 5).

21

Acknowledgments

I am grateful to Martin Odersky, Matthias Zenger and Erik Stenman for valu-
able comments on previous drafts of this paper and to Vincent Cremet for his
contribution to the code examples. This paper was motivated in part by a
discussion led by Prof. Alain Wegmann, Prof. Martin Odersky and myself on
SCALA as a possible alternative to the AsML language for programming ASM
models.

References

1]

FErgon DBorger. The Origins and the Development of the ASM
Method for High Level System Design and Analysis, 2002.
http://www.di.unipi.it/ boerger/.

Microsoft Corp. AsmL: The Abstract State Machine Language, 2002.
http://research.microsoft.com/fse/asml/.

Microsoft Corp. Introducing AsmL: A Tutorial for the Abstract State Ma-
chine Language, 2002. http://research.microsoft.com/fse/asml/.

Microsoft Corp. AsmlL 2 Release Notes, 2003.
http://research.microsoft.com/fse/asml/.
Yuri Gurevich. May 1997 Draft of the ASM Guide, 1997.

http://research.microsoft.com/ gurevich/.

James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha. The Java Language
Specification, 2000. http://java.sun.com/docs/books/jls/.

Martin Odersky and al. Scala Language Specification, 2004.
http://scala.epfl.ch/.

Foundations of Software Engineering (FSE). An Introduction to ASML
1.5, 2002.

Igor Potapov. Software FEngineering Course - Lectures 6-12, 2001.
http://www.csc.liv.ac.uk/~igor/COMP201/.

Matthias Zenger. Fuxtensible Algebraic Datatypes with Defaults, 2001.
http://lampwww.epfl.ch/~zenger/jaco/.

22

Appendix

abstract enumerated if mod property subsetseq
add eq (=) iff mybase process superset
allpublic event ifnone namespace protected supersetseq
and exists implements new public the
any explore implies nonvirtual ref then
as extends import not remove throw
case false in ne (<>) require to
catch fixpoint initially notin resulting true
choose for inout null return try
class forall interface of sealead type
const foreach internal operator search undef
constraint foreign intersect or separate union
delegate friend is otherwise set unique
difference from 1t (<) out shadows until
do function lte (<=) override shared var
else get let power skip virtual
elseif gt (>) match private step where
ensure gte (>=) me primitive structure while
enum holds merge procedure subset with
Table 1: AsML keywords (114)

abstract else if object sealed try

case extends implicit override super type

catch false import package this val

class final match private throw var

def finally new protected trait while

do for null return true with

yield

Table 2: ScALA keywords (37)

AsmL Scala Description

Boolean | Boolean | values true and false
Null Al1Ref value null

Byte Byte 8-bit unsigned integer type
Short Short 16-bit signed integer type
Integer | Int 32-bit signed integer type
Long Long 64-bit signed integer type
Float Float 32-bit floating-point type
Double Double 64-bit floating-point type
Char Char Unicode character type
String | String | Unicode string type

- Symbol | symbolic names (i.e. XML tags)
Void Unit statements

Table 3: Predefined primitive types

23

AsmL Scala Description
Seq of A Seq[A], List [A] all sequences containing elements of type A
Set of A Set [A] all sets containing elements of type A
Map of A to B | Map[A, B] all tables whose entries map elements of type A to
element of type B
(A1,A2,..) Tuple(A1,A2,..) | all tuples consisting of elements of type Al,
A2 .. with the two shortcuts Pair[A,B] and
Triple[A,B,C]
A? Option[A] all the values of type A plus the special value null
in AsML and None in SCALA
- Array[A] all arrays containing elements of type A
- Iterator[A] all iterators on elements of type A
- Stream[A] all lazy sequences on elements of type A
Table 4: Predefined composite types
Feature AsmL Scala
variable declaration global /local /instance -/local /instance
function declaration global/-/instance -/local/instance
nested declarations - v
higher-order functions - v
type inference v v
type parametrization v v
type covariance v v
class inheritance v v
class constructor implicit/user-defined implicit /user-defined
method overloading v v
method overriding override override
pattern matching v v
exception handling try/catch/- try/catch/finally
namespace management namespace package
import aliasing = =>
compiler directives vl -

Table 5: Short feature comparison

!i.e. [AsmL.Profile(Accesses=true)] means that all accesses to fields get profiled.

24

