
An Overview of the Scala Programming Language

Second Edition

Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos
Gilles Dubochet, Burak Emir, Sean McDirmid, Stéphane Micheloud,

Nikolay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon, Matthias Zenger

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

Technical Report LAMP-REPORT-2006-001

Abstract

Scala fuses object-oriented and functional programming in
a statically typed programming language. It is aimed at the
construction of components and component systems. This
paper gives an overview of the Scala language for readers
who are familar with programming methods and program-
ming language design.

1 Introduction

True component systems have been an elusive goal of the
software industry. Ideally, software should be assembled
from libraries of pre-written components, just as hardware is
assembled from pre-fabricated chips. In reality, large parts
of software applications are written �from scratch�, so that
software production is still more a craft than an industry.

Components in this sense are simply software parts which
are used in some way by larger parts or whole applications.
Components can take many forms; they can be modules,
classes, libraries, frameworks, processes, or web services.
Their size might range from a couple of lines to hundreds of
thousands of lines. They might be linked with other compo-
nents by a variety of mechanisms, such as aggregation, pa-
rameterization, inheritance, remote invocation, or message
passing.

We argue that, at least to some extent, the lack of
progress in component software is due to shortcomings in the
programming languages used to de�ne and integrate compo-
nents. Most existing languages o�er only limited support for
component abstraction and composition. This holds in par-
ticular for statically typed languages such as Java and C#
in which much of today's component software is written.

Scala has been developed from 2001 in the programming
methods laboratory at EPFL. It has been released publicly
on the JVM platform in January 2004 and on the .NET
platform in June 2004. A second, revised version, described
in this paper was released in March 2006.

The work on Scala stems from a research e�ort to develop
better language support for component software. There are
two hypotheses that we would like to validate with the Scala
experiment. First, we postulate that a programming lan-

guage for component software needs to be scalable in the
sense that the same concepts can describe small as well as
large parts. Therefore, we concentrate on mechanisms for
abstraction, composition, and decomposition rather than
adding a large set of primitives which might be useful for
components at some level of scale, but not at other lev-
els. Second, we postulate that scalable support for compo-
nents can be provided by a programming language which
uni�es and generalizes object-oriented and functional pro-
gramming. For statically typed languages, of which Scala
is an instance, these two paradigms were up to now largely
separate.

To validate our hypotheses, Scala needs to be applied
in the design of components and component systems. Only
serious application by a user community can tell whether the
concepts embodied in the language really help in the design
of component software. To ease adoption by users, the new
language needs to integrate well with existing platforms and
components. Scala has been designed to work well with
Java and C#. It adopts a large part of the syntax and type
systems of these languages. At the same time, progress can
sometimes only be achieved by throwing over board some
existing conventions. This is why Scala is not a superset of
Java. Some features are missing, others are re-interpreted
to provide better uniformity of concepts.

While Scala's syntax is intentionally conventional, its
type system breaks new ground in at least three areas. First,
abstract type de�ninitions and path-dependent types apply
the νObj calculus [36] to a concrete language design. Sec-
ond, modular mixin composition combines the advantages of
mixins and traits. Third, views enable component adapta-
tion in a modular way.

The rest of this paper gives an overview of Scala. It
expands on the following key aspects of the language:

� Scala programs resemble Java programs in many ways
and they can seamlessly interact with code written in
Java (Section 2).

� Scala has a uniform object model, in the sense that
every value is an object and every operation is a method
call (Section 3).

Listing 1: A simple program in Java and Scala.

// Java
class PrintOptions {
public static void main(String[] args) {
System.out.println("Options selected:")
for (int i = 0; i < args.length; i++)
if (args[i].startsWith("-"))
System.out.println(" "+args[i].substring(1))

}
}

// Scala
object PrintOptions {
def main(args: Array[String]): unit = {
System.out.println("Options selected:")
for (val arg <- args)
if (arg.startsWith("-"))
System.out.println(" "+arg.substring(1))

}
}

� Scala is also a functional language in the sense that
functions are �rst-class values (Section 4).

� Scala has uniform and powerful abstraction concepts
for both types and values (Section 5).

� It has �exible modular mixin-composition constructs
for composing classes and traits (Section 6).

� It allows decomposition of objects by pattern matching
(Section 7).

� Patterns and expressions are generalized to support the
natural treatment of XML documents (Section 8).

� Scala allows external extensions of components using
views (Section 9).

Section 10 discusses related work and Section 11 concludes.
This paper is intended to give a high-level overview of

Scala for readers who are knowledgeable in programming
languages. It is neither a precise language reference nor a
tutorial. For a more precise reference, the reader is referred
to the Scala Language Speci�cation [35]. There are also
several tutorials on Scala available [34, 18].

2 A Java-Like Language

Scala is designed to interact well with mainstream platforms
such as Java or C#. It shares with these languages most of
the basic operators, data types, and control structures.

For simplicity, we compare Scala in the following only
with Java. But since Java and C# have themselves much
in common, almost all similarities with Java carry over to
C#. Sometimes, Scala is even closer to C# than to Java,
for instance in its treatment of genericity.

Listing 1 shows a simple program in Java and Scala. The
program prints out all options included in the program's
command line. The example shows many similarities. Both
languages use the same primitive class String, calling the
same methods. They also use the same operators and the

same conditional control construct. The example also shows
some di�erences between the two languages. In particular:

� Scala has object de�nitions (starting with object) be-
sides class de�nitions. An object de�nition de�nes a
class with a single instance � this is sometimes called
a singleton object. In the example above, the singleton
object PrintOptions has main as a member function.

� Scala uses the id : type syntax for de�nitions and pa-
rameters whereas Java uses pre�x types, i.e. type id.

� Scala's syntax is more regular than Java's in that all
de�nitions start with a keyword. In the example above,
def main starts a method de�nition.

� Scala does not require semicolons at the end of state-
ments (they are allowed but are optional).

� Scala does not have special syntax for array types and
array accesses. An array with elements of type T is
written Array[T]. Here, Array is a standard class and
[T] is a type parameter. In fact, arrays in Scala inherit
from functions. This is why array accesses are written
like function applications a(i), instead of Java's a[i].
Arrays are further explained in Section 4.3.

� The return type of main is written unit whereas Java
uses void. This stems from the fact that there is no dis-
tinction in Scala between statements and expressions.
Every function returns a value. If the function's right
hand side is a block, the evaluation of its last expression
is returned as result. The result might be the trivial
value {} whose type is unit. Familar control constructs
such as if-then-else are also generalized to expressions.

� Scala adopts most of Java's control structures, but it
lacks Java's traditional for-statement. Instead, there
are for-comprehensions which allow one to iterate di-
rectly over the elements of an array (or list, or iter-
ator, ...) without the need for indexing. The new
Java 5.0 also has a notion of �extended for-loop� which
is similar to, but more restrictive than, Scala's for-
comprehensions.

Even though their syntax is di�erent, Scala programs can
inter-operate without problems with Java programs. In
the example above, the Scala program invokes methods
startsWith and substring of String, which is a class de-
�ned in Java. It also accesses the static out �eld of the Java
class System, and invokes its (overloaded) println method.
This is possible even though Scala does not have a concept
of static class members. In fact, every Java class is seen in
Scala as two entities, a class containing all dynamic mem-
bers and a singleton object, containing all static members.
Hence, System.out is accessible in Scala as a member of the
object System.

Even though it is not shown in the example, Scala classes
and objects can also inherit from Java classes and implement
Java interfaces. This makes it possible to use Scala code in
a Java framework. For instance, a Scala class might be de-
�ned to implement the interface java.util.EventListener.
Instances of that class may then be noti�ed of events issued
by Java code.

2

(java.lang.Object)

Figure 1: Class hierarchy of Scala.

3 A Uni�ed Object Model

Scala uses a pure object-oriented model similar to
Smalltalk's: Every value is an object and every operation
is a message send.

3.1 Classes

Figure 2 illustrates Scala's class hierarchy. Every class in
Scala inherits from class Scala.Any. Subclasses of Any fall
into two categories: the value classes which inherit from
scala.AnyVal and the reference classes which inherit from
scala.AnyRef. Every primitive Java type name corresponds
to a value class, and is mapped to it by a prede�ned type
alias. In a Java environment, AnyRef is identi�ed with the
root class java.lang.Object. An instance of a reference
class is usually implemented as a pointer to an object stored
in the program heap. An instance of a value class is usually
represented directly, without indirection through a pointer.
Sometimes it is necessary to convert between the two repre-
sentations, for example when an instance of a value class is
seen as an instance of the root class Any. These boxing con-
versions and their inverses are done automatically, without
explicit programmer code.

Note that the value class space is �at; all value classes
are subtypes from scala.AnyVal, but they do not subtype
each other. Instead there are views (i.e. implicit conversions,
see Section 9) between elements of di�erent value classes.
We considered a design alternative with subtyping between
value classes. For instance, we could have made Int a sub-
type of Float, instead of having an implicit conversion from

Int to Float. We refrained from following this alternative,
because we want to maintain the invariant that interpreting
a value of a subclass as an instance of its superclass does
not change the value's representation. Among other things,
we want to guarantee that for each pair of types S <: T and
each instance x of S the following equality holds1:

x.asInstanceOf[T].asInstanceOf[S] = x

At the bottom of the type hierarchy are the two classes
scala.Null and scala.Nothing. Type Null is a subtype of
all reference types; its only instance is the null reference.
Since Null is not a subtype of value types, null is not a
member of any such type. For instance, it is not possible to
assign null to a variable of type int.

Type Nothing is a subtype of every other type; there ex-
ist no instances of this type. Even though type Nothing
is empty, it is nevertheless useful as a type parameter.
For instance, the Scala library de�nes a value Nil of type
List[Nothing]. Because lists are covariant in Scala, this
makes Nil an instance of List[T], for any element type T .

The equality operation == between values is designed to
be transparent with respect to the type's representation. For
value types, it is the natural (numeric or boolean) equality.
For reference types, == is treated as an alias of the equals
method from java.lang.Object. That method is originally
de�ned as reference equality, but is meant to be overridden
in subclasses to implement the natural notion of equality for
these subclasses. For instance, the boxed versions of value

1asInstanceOf is Scala's standard �type cast� method de�ned in the
root class Any.

3

types would implement an equals method which compares
the boxed values. By contrast, in Java, == always means ref-
erence equality on reference types. While this is a bit more
e�cient to implement, it also introduces a serious coherence
problem because boxed versions of equal values might no
longer be equal with respect to ==.

Some situations require reference equality instead of
user-de�ned equality. An example is hash-consing, where
e�ciency is paramount. For these cases, class AnyRef de-
�nes an additional eq method, which cannot be overridden,
and is implemented as reference equality (i.e., it behaves like
== in Java for reference types).

3.2 Operations

Another aspect of Scala's uni�ed object model is that ev-
ery operation is a message send, that is, the invocation of
a method. For instance the addition x + y is interpreted as
x.+(y), i.e. the invocation of the method + with x as the
receiver object and y as the method argument. This idea,
which has been applied originally in Smalltalk, is adapted
to the more conventional syntax of Scala as follows. First,
Scala treats operator names as ordinary identi�ers. More
precisely, an identi�er is either a sequence of letters and
digits starting with a letter, or a sequence of operator char-
acters. Hence, it is possible to de�ne methods called +, <=,
or ::, for example. Next, Scala treats every occurrence of
an identi�er between two expressions as a method call. For
instance, in Listing 1, one could have used the operator syn-
tax (arg startsWith "-") as syntactic sugar for the more
conventional syntax (arg.startsWith("-")).

As an example how user-de�ned operators are declared
and applied, consider the following implementation of a
class Nat for natural numbers. This class (very ine�-
ciently) represents numbers as instances of two classes Zero
and Succ. The number N would hence be represented as
new SuccN(Zero). We start the implementation with an ab-
stract class specifying the operations supported by natural
numbers. According to the de�nition of class Nat, natural
numbers provide two abstract methods isZero, and pred, as
well as three concrete methods succ, +, and -.

abstract class Nat {
def isZero: boolean
def pred: Nat
def succ: Nat = new Succ(this)
def + (x: Nat): Nat =
if (x.isZero) this else succ + x.pred

def - (x: Nat): Nat =
if (x.isZero) this else pred - x.pred

}

Note that Scala allows one to de�ne parameterless methods
such as isZero, pred, and succ in class Nat. Such methods
are invoked every time their name is selected; no argument
list is passed. Note also that abstract class members are
identi�ed syntactically because they lack a de�nition; no
additional abstract modi�er is needed for them.

We now extend class Nat with a singleton object Zero
and a class for representing successors, Succ.

object Zero extends Nat {
def isZero: boolean = true
def pred: Nat = throw new Error("Zero.pred")
override def toString: String = "Zero"

}

class Succ(n: Nat) extends Nat {
def isZero: boolean = false
def pred: Nat = n
override def toString: String = "Succ("+n+")"

}

The Succ class illustrates a di�erence between the class def-
inition syntax of Scala and Java. In Scala, constructor pa-
rameters follow the class name; no separate class constructor
de�nition within the body of Succ is needed. This construc-
tor is called the primary constructor ; the whole body of the
class is executed when the primary constructor is called at
the time the class is instantiated. There is syntax for sec-
ondary constructors in case more than one constructor is
desired (see Section 5.2.1 in [35]).

The Zero object and the Succ class both implement the
two abstract methods of their parent class, Nat. They also
override the toString method which they inherit from class
Any. The override modi�er is required in Scala for methods
that override a concrete method in some inherited class; it is
optional for methods that implement some abstract method
in their superclass. The modi�er gives useful redundancy
to protect against two common class of errors. One class
of errors are accidental overrides, where a method in a sub-
class unintentionally overrides a method in a superclass. In
that case the Scala compiler would complain about a missing
overridemodi�er. The other class of errors are broken over-
riding links. These arise when the parameters of a method
in a superclass are changed, but one forgets to change the
parameters of an overriding method in a subclass. Instead of
silently converting the override to an overloading, the Scala
compiler would in this case complain that the method in the
subclass overrides nothing.

The ability to have user-de�ned in�x operators raises
the question about their relative precedence and associativ-
ity. One possibility would be to have ��xity�-declarations in
the style of Haskell or SML, where users can declare these
properties of an operator individually. However, such decla-
rations tend to interact badly with modular programming.
Scala opts for a simpler scheme with �xed precedences and
associativities. The precedence of an in�x operator is deter-
mined by its �rst character; it coincides with the operator
precedence of Java for those operators that start with an
operator character used in these languages. The following
lists operators in increasing precedence:

(all letters)
|
^
&
< >
= !
:
+ -
* / %
(all other special characters)

Operators are usually left-associative, i.e. x + y + z is
interpreted as (x + y) + z. The only exception to that
rule are operators ending in a colon. These are treated as
right-associative. An example is the list-consing operator
::. Here, x :: y :: zs is interpreted as x :: (y :: zs).
Right-associative operators are also treated di�erently with
respect to method lookup. Whereas normal operators take
their left operand as receiver, right-associative operators
take their right operand as receiver. For instance, the list

4

consing sequence x :: y :: zs is treated as equivalent to
zs.::(y).::(x). In fact, :: is implemented as a method in
Scala's List class, which pre�xes a given argument to the
receiver list and returns the resulting list as result.

Some operators in Scala do not always evaluate their ar-
gument; examples are the standard boolean operator && and
||. Such operators can also be represented as methods be-
cause Scala allows to pass arguments by name. For instance,
here is a user-de�ned class Bool that mimics the pre-de�ned
booleans.

abstract class Bool {
def && (x: => Bool): Bool
def || (x: => Bool): Bool

}

In this class, the formal parameter of methods || and &&
is => Bool. The arrow indicates that actual arguments for
these parameters are passed in unevaluated form. The argu-
ments are evaluated every time the formal parameter name
is mentioned (that is, the formal parameter behaves like a
parameterless function).

Here are the two canonical instances of class Bool:

object False extends Bool {
def && (x: => Bool): Bool = this
def || (x: => Bool): Bool = x

}
object True extends Bool {
def && (x: => Bool): Bool = x
def || (x: => Bool): Bool = this

}

As can be seen in these implementations, the right operand
of a && (resp. ||) operation is evaluated only if the left
operand is the True (False) object.

As the examples in this section show, it is possible in
Scala to de�ne every operator as a method and treat every
operation as an invocation of a method. In the interest of
e�ciency, the Scala compiler translates operations on value
types directly to primitive instruction codes; this, however,
is completely transparent to the programmer.

In the example above Zero and Succ both inherit from a
single class. This is not the only possibility. In fact every
class or object in Scala can inherit from several traits in
addition to a normal class. A trait is an abstract class that
is meant to be combined with other classes. Some traits
play the role of interfaces in Java, i.e. they de�ne a set of
abstract methods which are implemented by some class. But
unlike interfaces, traits in Scala can also contain method
implementations or �elds.

3.3 Variables and Properties

If every operation is a method invocation in Scala, what
about variable dereferencing and assignment? In fact, when
acting on class members these operations are also treated as
method calls. For every de�nition of a variable var x: T in
a class, Scala de�nes setter and getter methods as follows.

def x: T
def x_= (newval: T): unit

These methods reference and update a mutable memory cell,
which is not accessible directly to Scala programs. Every
mention of the name x in an expression is then interpreted

as a call to the parameterless method x. Furthermore, ev-
ery assignment x = e is interpreted as a method invocation
x_=(e).

The treatment of variable accesses as method calls makes
it possible to de�ne properties (in the C# sense) in Scala.
For instance, the following class Celsius de�nes a property
degree which can be set only to values greater or equal than
-273.

class Celsius {
private var d: int = 0
def degree: int = d
def degree_=(x: int): unit = if (x >= -273) d = x

}

Clients can use the pair of methods de�ned by class Celsius
as if it de�ned a variable:

val c = new Celsius; c.degree = c.degree - 1

4 Operations Are Objects

Scala is a functional language in the sense that every func-
tion is a value. It provides a lightweight syntax for the
de�nition of anonymous and curried functions, and it also
supports nested functions.

4.1 Methods are Functional Values

To illustrate the use of functions as values, consider a func-
tion exists that tests whether a given array has an element
which satis�es a given predicate:

def exists[T](xs: Array[T], p: T => boolean) = {
var i: int = 0
while (i < xs.length && !p(xs(i))) i = i + 1
i < xs.length

}

The element type of the array is arbitrary; this is expressed
by the type parameter [T] of method exists (type param-
eters are further explained in Section 5.1). The predicate
to test is also arbitrary; this is expressed by the parame-
ter p of method exists. The type of p is the function type
T => boolean, which has as values all functions with domain
T and range boolean. Function parameters can be applied
just as normal functions; an example is the application of
p in the condition of the while-loop. Functions which take
functions as arguments, or return them as results, are called
higher-order functions.

Once we have a function exists, we can use it to de�ne
a function forall by double negation: a predicate holds for
all values of an array if there does not exist an element for
which the predicate does not hold. This is expressed by the
following function forall:

def forall[T](xs: Array[T], p: T => boolean) = {
def not_p(x: T) = !p(x)
!exists(xs, not_p)

}

The function forall de�nes a nested function not_p which
negates the parameter predicate p. Nested functions can
access parameters and local variables de�ned in their en-
vironment; for instance not_p accesses forall's parameter
p.

5

It is also possible to de�ne a function without giving it a
name; this is used in the following shorter version of forall:

def forall[T](xs: Array[T], p: T => boolean) =
!exists(xs, (x: T) => !p(x))

Here, (x: T) => !p(x) de�nes an anonymous function
which maps its parameter x of type T to !p(x).

Using exists and forall, we can de�ne a function
hasZeroRow, which tests whether a given two-dimensional
integer matrix has a row consisting of only zeros.

def hasZeroRow(matrix: Array[Array[int]]) =
exists(matrix, (row: Array[int]) => forall(row, 0 ==))

The expression forall(row, 0 ==) tests whether row con-
sists only of zeros. Here, the == method of the number 0 is
passed as argument corresponding to the predicate parame-
ter p. This illustrates that methods can themselves be used
as values in Scala; it is similar to the �delegates� concept in
C#.

4.2 Functions are Objects

If methods are values, and values are objects, it follows
that methods themselves are objects. In fact, the syn-
tax of function types and values is just syntactic sugar
for certain class types and class instances. The function
type S => T is equivalent to the parameterized class type
scala.Function1[S, T], which is de�ned as follows in the
standard Scala library:

package scala
abstract class Function1[-S, +T] {
def apply(x: S): T

}

Analogous conventions exist for functions with more
than one argument. In general, the n-ary func-
tion type, (T1, T2, ..., Tn) => T is interpreted as
Functionn[T1, T2, ..., Tn, T]. Hence, functions are in-
terpreted as objects with apply methods. For example, the
anonymous �incrementer� function x: int => x + 1 would
be expanded to an instance of Function1 as follows.

new Function1[int, int] {
def apply(x: int): int = x + 1

}

Conversely, when a value of a function type is applied to
some arguments, the type's apply method is implicitly in-
serted. E.g. for p of type Function1[S, T], the application
p(x) is expanded to p.apply(x).

4.3 Re�ning Functions

Since function types are classes in Scala, they can be fur-
ther re�ned in subclasses. An example are arrays, which are
treated as special functions over the integer domain. Class
Array[T] inherits from Function1[int, T], and adds meth-
ods for array update and array length, among others:

package scala
class Array[T] extends Function1[int, T]

with Seq[T] {
def apply(index: int): T = ...
def update(index: int, elem: T): unit= ...
def length: int = ...

def exists(p: T => boolean): boolean = ...
def forall(p: T => boolean): boolean = ...
...

}

Special syntax exists for function applications appearing on
the left-hand side of an assignment; these are interpreted as
applications of an update method. For instance, the assign-
ment a(i) = a(i) + 1 is interpreted as

a.update(i, a.apply(i) + 1) .

The interpretation of array accesses as function applications
might seem costly. However, inlining transformations in the
Scala compiler transform code such as the one above to prim-
itive array accesses in the host system.

The above de�nition of the Array class also lists methods
exists and forall. Hence, it would not have been necessary
to de�ne these operations by hand. Using the methods in
class Array, the hasZeroRow function can also be written as
follows.

def hasZeroRow(matrix: Array[Array[int]]) =
matrix exists (row => row forall (0 ==))

Note the close correspondence of this code to a verbal spec-
i�cation of the task: �test whether in the matrix there exists
a row such that in the row all elements are zeroes�. Note
also that we left out the type of the row parameter in the
anonymous function. This type can be inferred by the Scala
compiler from the type of matrix.exists.

4.4 Sequences

Higher-order methods are very common when processing se-
quences. Scala's library de�nes several di�erent kinds of se-
quences including arrays, lists, streams, and iterators. All
sequence types inherit from trait scala.Seq; and they all de-
�ne a set of methods which streamlines common processing
tasks. For instance, the map method applies a given function
uniformly to all sequence elements, yielding a sequence of
the function results. Another example is the filtermethod,
which applies a given predicate function to all sequence el-
ements and returns a sequence of those elements for which
the predicate is true.

The application of these two functions is illustrated in
the following function, sqrts, which takes a list xs of double
precision numbers, and returns a list consisting of the square
roots of all non-negative elements of xs.

def sqrts(xs: List[double]): List[double] =
xs filter (0 <=) map Math.sqrt

Note that Math.sqrt comes from a Java class. Such methods
can be passed to higher-order functions in the same way as
methods de�ned in Scala.

4.5 For Comprehensions

Scala o�ers special syntax to express combinations of cer-
tain higher-order functions more naturally. For comprehen-
sions are a generalization of list comprehensions found in
languages like Haskell. With a for comprehension the sqrts
function can be written as follows:

def sqrts(xs: List[double]): List[double] =
for (val x <- xs; 0 <= x) yield Math.sqrt(x)

6

Here, val x <- xs is a generator, which produces a sequence
of values, and 0 <= x is a �lter, which eliminates some of
the produced values from consideration. The comprehension
returns another sequence formed from the values produced
by the yield part. There can be several generators and
�lters in a comprehension.

For comprehensions are mapped to combinations involv-
ing the higher-order methods map, flatMap, and filter. For
instance, the formulation of the sqrts method above would
be mapped to the previous implementation of sqrts in Sec-
tion 4.4.

The power of for comprehensions comes from the fact
that they are not tied to a particular data type. They
can be constructed over any carrier type that de�nes ap-
propriate map, flatMap, and filter methods. This includes
all sequence types2, optional values, database interfaces, as
well as several other types. Scala users might apply for-
comprehensions to their own types, as long as these de�ne
the required methods.

For loops are similar to comprehensions in Scala.
They are mapped to combinations involving methods
foreach and filter. For instance, the for loop
for (val arg <- args) ... in Listing 1 is mapped to

args foreach (arg => ...)

5 Abstraction

An important issue in component systems is how to abstract
from required components. There are two principal forms
of abstraction in programming languages: parameterization
and abstract members. The �rst form is typically functional
whereas the second form is typically object-oriented. Tra-
ditionally, Java supported functional abstraction for values
and object-oriented abstraction for operations. The new
Java 5.0 with generics supports functional abstraction also
for types.

Scala supports both styles of abstraction uniformly for
types as well as values. Both types and values can be pa-
rameters, and both can be abstract members. The rest of
this section presents both styles and reviews at the same
time a large part of Scala's type system.

5.1 Functional Abstraction

The following class de�nes cells of values that can be read
and written.

class GenCell[T](init: T) {
private var value: T = init
def get: T = value
def set(x: T): unit = { value = x }

}

The class abstracts over the value type of the cell with the
type parameter T. We also say, class GenCell is generic.

Like classes, methods can also have type parameters.
The following method swaps the contents of two cells, which
must both have the same value type.

def swap[T](x: GenCell[T], y: GenCell[T]): unit = {
val t = x.get; x.set(y.get); y.set(t)

2Arrays do not yet de�ne all of sequence methods, because some
of them require run-time types, which are not yet implemented

}

The following program creates two cells of integers and then
swaps their contents.

val x: GenCell[int] = new GenCell[int](1)
val y: GenCell[int] = new GenCell[int](2)
swap[int](x, y)

Actual type arguments are written in square brackets; they
replace the formal parameters of a class constructor or
method. Scala de�nes a sophisticated type inference sys-
tem which permits to omit actual type arguments in both
cases. Type arguments of a method or constructor are in-
ferred from the expected result type and the argument types
by local type inference [41, 39]. Hence, one can equivalently
write the example above without any type arguments:

val x = new GenCell(1)
val y = new GenCell(2)
swap(x, y)

Parameter bounds. Consider a method updateMax which
sets a cell to the maximum of the cell's current value and a
given parameter value. We would like to de�ne updateMax so
that it works for all cell value types which admit a compar-
ison function �<� de�ned in trait Ordered. For the moment
assume this trait is de�ned as follows (a more re�ned version
is in the standard Scala library).

trait Ordered[T] {
def < (x: T): boolean

}

The updateMax method can be de�ned in a generic way by
using bounded polymorphism:

def updateMax[T <: Ordered[T]](c: GenCell[T], x: T) =
if (c.get < x) c.set(x)

Here, the type parameter clause [T <: Ordered[T]] intro-
duces a bounded type parameter T. It restricts the type
arguments for T to those types T that are a subtype of
Ordered[T]. Therefore, the < method of class Ordered can
be applied to arguments of type T. The example shows that
the bounded type parameter may itself appear as part of the
bound, i.e. Scala supports F-bounded polymorphism [10].

Variance. The combination of subtyping and generics in
a language raises the question how they interact. If C is
a type constructor and S is a subtype of T , does one also
have that C[S] is a subtype of C[T]? Type constructors with
this property are called covariant. The type constructor
GenCell should clearly not be covariant; otherwise one could
construct the following program which leads to a type error
at run time.

val x: GenCell[String] = new GenCell[String]("abc")
val y: GenCell[Any] = x; // illegal!
y.set(1)
val z: String = y.get

It is the presence of a mutable variable in GenCell which
makes covariance unsound. Indeed, a GenCell[String] is
not a special instance of a GenCell[Any] since there are
things one can do with a GenCell[Any] that one cannot do

7

with a GenCell[String]; set it to an integer value, for in-
stance.

On the other hand, for immutable data structures, co-
variance of constructors is sound and very natural. For in-
stance, an immutable list of integers can be naturally seen
as a special case of a list of Any. There are also cases where
contravariance of parameters is desirable. An example are
output channels Chan[T], with a write operation that takes
a parameter of the type parameter T. Here one would like
to have Chan[S] <: Chan[T] whenever T <: S.

Scala allows to declare the variance of the type parame-
ters of a class using plus or minus signs. A �+� in front of a
parameter name indicates that the constructor is covariant
in the parameter, a �−� indicates that it is contravariant,
and a missing pre�x indicates that it is non-variant.

For instance, the class GenList below de�nes a simple
covariant list with methods isEmpty, head, and tail.

abstract class GenList[+T] {
def isEmpty: boolean
def head: T
def tail: GenList[T]

}

Scala's type system ensures that variance annotations are
sound by keeping track of the positions where a type pa-
rameter is used. These positions are classi�ed as covariant
for the types of immutable �elds and method results, and
contravariant for method argument types and upper type
parameter bounds. Type arguments to a non-variant type
parameter are always in non-variant position. The position
�ips between contra- and co-variant inside a type argument
that corresponds to a contravariant parameter. The type
system enforces that covariant (respectively, contravariant)
type parameters are only used in covariant (contravariant)
positions.

Here are two implementations of the GenList class:

object Empty extends GenList[Nothing] {
def isEmpty: boolean = true
def head: Nothing = throw new Error("Empty.head")
def tail: GenList[Nothing] = throw new Error("Empty.tail")

}
class Cons[+T](x: T, xs: GenList[T])

extends GenList[T] {
def isEmpty: boolean = false
def head: T = x
def tail: GenList[T] = xs

}

Note that the Empty object represents the empty list for all
element types. Covariance makes this possible, since Empty's
type, GenList[Nothing] is a subtype of GenList[T], for any
element type T .

Binary methods and lower bounds. So far, we have
associated covariance with immutable data structures. In
fact, this is not quite correct, because of binary methods. For
instance, consider adding a prepend method to the GenList
class. The most natural de�nition of this method takes an
argument of the list element type:

abstract class GenList[+T] { ...
def prepend(x: T): GenList[T] = // illegal!
new Cons(x, this)

}

However, this is not type-correct, since now the type param-
eter T appears in contravariant position inside class GenList.
Therefore, it may not be marked as covariant. This is a pity
since conceptually immutable lists should be covariant in
their element type. The problem can be solved by general-
izing prepend using a lower bound:

abstract class GenList[+T] { ...
def prepend[S >: T](x: S): GenList[S] = // OK
new Cons(x, this)

}

prepend is now a polymorphic method which takes an ar-
gument of some supertype S of the list element type, T.
It returns a list with elements of that supertype. The
new method de�nition is legal for covariant lists since
lower bounds are classi�ed as covariant positions; hence the
type parameter T now appears only covariantly inside class
GenList.

Comparison with wildcards. Java 5.0 also has a way to
annotate variances which is based on wildcards [45]. The
scheme is essentially a syntactic variant of Igarashi and Vi-
roli's variant parametric types [26]. Unlike in Scala, in Java
5.0 annotations apply to type expressions instead of type
declarations. As an example, covariant generic lists could be
expressed by writing every occurrence of the GenList type
to match the form GenList<? extends T>. Such a type ex-
pression denotes instances of type GenList where the type
argument is an arbitrary subtype of T .

Covariant wildcards can be used in every type expression;
however, members where the type variable does not appear
in covariant position are then �forgotten� in the type. This
is necessary for maintaining type soundness. For instance,
the type GenCell<? extends Number> would have just the
single member get of type Number, whereas the set method,
in which GenCell’s type parameter occurs contravariantly,
would be forgotten.

In an earlier version of Scala we also experimented with
usage-site variance annotations similar to wildcards. At
�rst-sight, this scheme is attractive because of its �exibility.
A single class might have covariant as well as non-variant
fragments; the user chooses between the two by placing
or omitting wildcards. However, this increased �exibility
comes at price, since it is now the user of a class instead of
its designer who has to make sure that variance annotations
are used consistently. We found that in practice it was quite
di�cult to achieve consistency of usage-site type annota-
tions, so that type errors were not uncommon. By contrast,
declaration-site annotations proved to be a great help in
getting the design of a class right; for instance they provide
excellent guidance on which methods should be generalized
with lower bounds. Furthermore, Scala's mixin composi-
tion (see Section 6) makes it relatively easy to factor classes
into covariant and non-variant fragments explicitly; in Java's
single inheritance scheme with interfaces this would be ad-
mittedly much more cumbersome. For these reasons, later
versions of Scala switched from usage-site to declaration-site
variance annotations.

5.2 Abstract Members

Object-oriented abstraction can be used in Scala as an al-
ternative to functional abstraction. For instance, here is a
version of the �cell� type using object-oriented abstraction.

8

abstract class AbsCell {
type T
val init: T
private var value: T = init
def get: T = value
def set(x: T): unit = { value = x }

}

The AbsCell class de�nes neither type nor value parameters.
Instead it has an abstract type member T and an abstract
value member init. Instances of that class can be created
by implementing these abstract members with concrete def-
initions. For instance:

val cell = new AbsCell { type T = int; val init = 1 }
cell.set(cell.get * 2)

The type of cell is AbsCell { type T = int }. Here,
the class type AbsCell is augmented by the re�nement
{ type T = int }. This makes the type alias cell.T = int
known to code accessing the cell value. Therefore, type-
speci�c operations such as the one below are legal.

cell.set(cell.get * 2)

Path-dependent types. It is also possible to access
AbsCell without knowing the binding of its type member.
For instance, the following method resets a given cell to its
initial value, independently of its value type.

def reset(c: AbsCell): unit = c.set(c.init)

Why does this work? In the example above, the expres-
sion c.init has type c.T, and the method c.set has type
c.T => unit. Since the formal parameter type and the ar-
gument type coincide, the method call is type-correct.

c.T is an instance of a path-dependent type. In gen-
eral, such a type has the form x1.xn.t, where n > 0,
x1, . . . , xn denote immutable values and t is a type member
of xn. Path-dependent types are a novel concept of Scala;
their theoretical foundation is provided by the νObj calculus
[36].

Path-dependent types rely on the immutability of the
pre�x path. Here is an example where this immutability is
violated.

var flip = false
def f(): AbsCell = {
flip = !flip
if (flip) new AbsCell { type T = int; val init = 1 }
else new AbsCell { type T = String; val init = "" }

}
f().set(f().get) // illegal!

In this example subsequent calls to f() return cells where
the value type is alternatingly int and String. The last
statement in the code above is erroneous since it tries to
set an int cell to a String value. The type system does
not admit this statement, because the computed type of
f().get would be f().T. This type is not well-formed, since
the method call f() is not a path.

Type selection and singleton types. In Java, where
classes can also be nested, the type of a nested class is
denoted by pre�xing it with the name of the outer class.
In Scala, this type is also expressible, in the form of

Outer # Inner, where Outer is the name of the outer class
in which class Inner is de�ned. The �#� operator denotes
a type selection. Note that this is conceptually di�erent
from a path dependent type p.Inner, where the path p de-
notes a value, not a type. Consequently, the type expression
Outer # t is not well-formed if t is an abstract type de�ned
in Outer.

In fact, path dependent types in Scala can be expanded
to type selections. The path dependent type p.t is taken as a
shorthand for p.type # t. Here, p.type is a singleton type,
which represents just the object denoted by p. Singleton
types by themselves are also useful for supporting chaining
of method calls. For instance, consider a class C with a
method incr which increments a protected integer �eld, and
a subclass D of C which adds a decr method to decrement
that �eld.

class C {
protected var x = 0
def incr: this.type = { x = x + 1; this }

}
class D extends C {
def decr: this.type = { x = x - 1; this }

}

Then we can chain calls to the incr and decr method, as in

val d = new D; d.incr.decr

Without the singleton type this.type, this would not have
been possible, since d.incr would be of type C, which does
not have a decr member. In that sense, this.type is similar
to (covariant uses of) Kim Bruce's mytype [9].

Family polymorphism and self types. Scala's abstract
type concept is particularly well suited for modeling fami-
lies of types which vary together covariantly. This concept
has been called family polymorphism. As an example, con-
sider the publish/subscribe design pattern. There are two
classes of participants � subjects and observers. Subjects de-
�ne a method subscribe by which observers register. They
also de�ne a publish method which noti�es all registered
observers. Noti�cation is done by calling a method notify
which is de�ned by all observers. Typically, publish is called
when the state of a subject changes. There can be several
observers associated with a subject, and an observer might
observe several subjects. The subscribe method takes the
identity of the registering observer as parameter, whereas an
observer's notify method takes the subject that did the no-
ti�cation as parameter. Hence, subjects and observers refer
to each other in their method signatures.

All elements of this design pattern are captured in the
following system.

abstract class SubjectObserver {
type S <: Subject
type O <: Observer
abstract class Subject requires S {
private var observers: List[O] = List()
def subscribe(obs: O) =
observers = obs :: observers

def publish =
for (val obs <- observers) obs.notify(this)

}
trait Observer {
def notify(sub: S): unit

9

}
}

The top-level class SubjectObserver has two member
classes: one for subjects, the other for observers. The
Subject class de�nes methods subscribe and publish. It
maintains a list of all registered observers in the private
variable observers. The Observer trait only declares an
abstract method notify.

Note that the Subject and Observer classes do not di-
rectly refer to each other, since such �hard� references would
prevent covariant extensions of these classes in client code.
Instead, SubjectObserver de�nes two abstract types S and
O which are bounded by the respective class types Subject
and Observer. The subject and observer classes use these
abstract types to refer to each other.

Note also that class Subject carries an explicit requires
annotation:

abstract class Subject requires S { ...

The annotation expresses that Subject can only be instanti-
ated as a part of a class that also conforms to S. Here, S is
called a self-type of class Subject. When a self-type is given,
it is taken as the type of this inside the class (without a self-
type annotation the type of this is taken as usual to be the
type of the class itself). In class Subject, the self-type is
necessary to render the call obs.notify(this) type-correct.

Self-types can be arbitrary; they need not have a rela-
tion with the class being de�ned. Type soundness is still
guaranteed, because of two requirements: (1) the self-type
of a class must be a subtype of the self-types of all its base
classes, (2) when instantiating a class in a new expression,
it is checked that the self type of the class is a supertype of
the type of the object being created.

The mechanism de�ned in the publish/subscribe pattern
can be used by inheriting from SubjectObserver, de�ning
application speci�c Subject and Observer classes. An ex-
ample is the SensorReader object below that takes sensors
as subjects and displays as observers.

object SensorReader extends SubjectObserver {
type S = Sensor
type O = Display
abstract class Sensor extends Subject {
val label: String
var value: double = 0.0
def changeValue(v: double) = {
value = v
publish

}
}
class Display extends Observer {
def println(s: String) = ...
def notify(sub: Sensor) =
println(sub.label + " has value " + sub.value)

}
}

In this object, type S is bound to Sensor whereas type O is
bound to Display. Hence, the two formerly abstract types
are now de�ned by overriding de�nitions. This �tying the
knot� is always necessary when creating a concrete class in-
stance. On the other hand, it would also have been possible
to de�ne an abstract SensorReader class which could be re-
�ned further by client code. In this case, the two abstract

types would have been overridden again by abstract type
de�nitions.

class AbsSensorReader extends SubjectObserver {
type S <: Sensor
type O <: Display
...

}

The following program illustrates how the SensorReader ob-
ject is used.

object Test {
import SensorReader._
val s1 = new Sensor { val label = "sensor1" }
val s2 = new Sensor { val label = "sensor2" }
def main(args: Array[String]) = {
val d1 = new Display; val d2 = new Display
s1.subscribe(d1); s1.subscribe(d2)
s2.subscribe(d1)
s1.changeValue(2); s2.changeValue(3)

}
}

Note the presence of an import clause, which makes the
members of object SensorReader available without pre�x
to the code in object Test. Import clauses in Scala are
more general than import clauses in Java. They can be
used anywhere, and can import members from any object,
not just from a package.

5.3 Modeling Generics with Abstract Types

The presence of two type abstraction facilities in one lan-
guage raises the question of language complexity � could we
have done with just one formalism? In this section we show
that functional type abstraction (aka generics) can indeed be
modeled by object-oriented type abstraction (aka abstract
types). The idea of the encoding is as follows.

Assume you have a parameterized class C with a type
parameter t (the encoding generalizes straightforwardly to
multiple type parameters). The encoding has four parts,
which a�ect the class de�nition itself, instance creations of
the class, base class constructor calls, and type instances of
the class.

1. The class de�nition of C is re-written as follows.

class C {
type t
/* rest of class */

}

That is, parameters of the original class are modeled
as abstract members in the encoded class. If the type
parameter t has lower and/or upper bounds, these carry
over to the abstract type de�nition in the encoding.
The variance of the type parameter does not carry over;
variances in�uence instead the formation of types (see
Point 4 below).

2. Every instance creation new C[T] with type argument
T is rewritten to:

new C { type t = T }

3. If C[T] appears as a superclass constructor, the inher-
iting class is augmented with the de�nition

10

type t = T

4. Every type C[T] is rewritten to one of the following
types which each augment class C with a re�nement.

C { type t = T } if t is declared non-variant,
C { type t <: T } if t is declared co-variant,
C { type t >: T } if t is declared contra-variant.

This encoding works except for possible name-con�icts.
Since the parameter name becomes a class member in the
encoding, it might clash with other members, including in-
herited members generated from parameter names in base
classes. These name con�icts can be avoided by renaming,
for instance by tagging every name with a unique number.

The presence of an encoding from one style of abstraction
to another is nice, since it reduces the conceptual complex-
ity of a language. In the case of Scala, generics become
simply �syntactic sugar� which can be eliminated by an en-
coding into abstract types. However, one could ask whether
the syntactic sugar is warranted, or whether one could have
done with just abstract types, arriving at a syntactically
smaller language. The arguments for including generics in
Scala are two-fold. First, the encoding into abstract types
is not that straightforward to do by hand. Besides the loss
in conciseness, there is also the problem of accidental name
con�icts between abstract type names that emulate type pa-
rameters. Second, generics and abstract types usually serve
distinct roles in Scala programs. Generics are typically used
when one needs just type instantiation, whereas abstract
types are typically used when one needs to refer to the ab-
stract type from client code. The latter arises in particular
in two situations: One might want to hide the exact de�ni-
tion of a type member from client code, to obtain a kind of
encapsulation known from SML-style module systems. Or
one might want to override the type covariantly in subclasses
to obtain family polymorphism.

Could one also go the other way, encoding abstract types
with generics? It turns out that this is much harder, and
that it requires at least a global rewriting of the program.
This was shown by studies in the domain of module sys-
tems where both kinds of abstraction are also available
[27]. Furthermore in a system with bounded polymorphism,
this rewriting might entail a quadratic expansion of type
bounds [8]. In fact, these di�culties are not surprising if one
considers the type-theoretic foundations of both systems.
Generics (without F-bounds) are expressible in System F<:

[11] whereas abstract types require systems based on depen-
dent types. The latter are generally more expressive than
the former; for instance νObj with its path-dependent types
can encode F<:.

6 Composition

After having explained Scala's constructs for type abstrac-
tion, we now focus on its constructs for class composition.
Mixin class composition in Scala is a fusion of the object-
oriented, linear mixin composition of Bracha [6], and the
more symmetric approaches of mixin modules [14, 25] and
traits [42]. To start with an example, consider the following
abstraction for iterators.

trait AbsIterator[T] {
def hasNext: boolean
def next: T

}

Note the use of the keyword trait instead of class. A trait
is a special form of an abstract class which does not have
any value parameters for its constructor. Traits can be used
in all contexts where other abstract classes appear; however
only traits can be used as mixins (see below).

Next, consider a trait which extends AbsIterator with
a method foreach, which applies a given function to every
element returned by the iterator.

trait RichIterator[T] extends AbsIterator[T] {
def foreach(f: T => unit): unit =
while (hasNext) f(next)

}

Here is a concrete iterator class, which returns successive
characters of a given string:

class StringIterator(s: String) extends AbsIterator[char] {
private var i = 0
def hasNext = i < s.length
def next = { val x = s charAt i; i = i + 1; x }

}

Mixin-class composition We now would like to combine
the functionality of RichIterator and StringIterator in a
single class. With single inheritance and interfaces alone
this is impossible, as both classes contain member imple-
mentations with code. Therefore, Scala provides a mixin-
class composition mechanism which allows programmers to
reuse the delta of a class de�nition, i.e., all new de�nitions
that are not inherited. This mechanism makes it possible to
combine RichIterator with StringIterator, as is done in
the following test program. The program prints a column of
all the characters of a given string.

object Test {
def main(args: Array[String]): unit = {
class Iter extends StringIterator(args(0))

with RichIterator[char]
val iter = new Iter
iter foreach System.out.println

}
}

The Iter class in function main is constructed from a
mixin composition of the parents StringIterator and
RichIterator. The �rst parent is called the superclass of
Iter, whereas the second parent is called a mixin.

Class Linearization

Mixin-class composition is a form of multiple inheritance.
As such it poses several questions which do not arise for sin-
gle inheritance. For instance: If several parent classes de�ne
a member with the same name, which member is inherited?
To which parent member does a super-call resolve? What
does it mean if a class is inherited by several di�erent paths?
In Scala, the fundamental construction for answering these
questions is the class linearization.

The classes reachable through transitive closure of the
direct inheritance relation from a class C are called the base
classes of C. Because of mixins, the inheritance relationship

11

on base classes forms in general a directed acyclic graph.
The linearization L(C) is a total order of all base classes of
C. It is computed as follows. Assume a class de�nition

class C extends B0 with . . . with Bn { . . . } .

One starts with the linearization of the C's superclass B0.
This will form the last part of the linearization of C. One
then pre�xes to this all classes in the linearization of the
�rst mixin class B1, except those classes that are already
in the constructed linearization because they were inherited
from B0. One continues like this for all other mixin classes
B2, . . . , Bn, adding only those classes that are not yet in
the constructed linearization. Finally, one takes C itself as
�rst class of the linearization of C.

For instance, the linearization of class Iter is

{ Iter, RichIterator, StringIterator,
AbsIterator, AnyRef, Any }

The linearization of a class re�nes the inheritance relation: if
C is a subclass of D, then C precedes D in any linearization
where both C and D occur. The linearization also satis�es
the property that a linearization of a class always contains
the linearization of its direct superclass as a su�x. For in-
stance, the linearization of StringIterator is

{ StringIterator, AbsIterator, AnyRef, Any }

which is a su�x of the linearization of its subclass Iter. The
same is not true for the linearization of mixin classes. It is
also possible that classes of the linearization of a mixin class
appear in di�erent order in the linearization of an inheriting
class, i.e. linearization in Scala is not monotonic [1].

Membership

The Iter class inherits members from both StringIterator
and RichIterator. Generally, a class derived from a mixin
composition Cn with ... with C1 can de�ne members it-
self and can inherit members from all parent classes. Scala
adopts Java and C#'s conventions for static overloading of
methods. It is thus possible that a class de�nes and/or in-
herits several methods with the same name3. To decide
whether a de�ned member of a class C overrides a member
of a parent class, or whether the two co-exist as overloaded
variants in C, Scala uses a de�nition of �matching� on mem-
bers, which is derived from similar concepts in Java and C#:
Roughly, two members match if they have the same name,
and, in case they are both methods, the same argument
types.

Member de�nitions of a class fall into two categories:
concrete and abstract. There are two rules that determine
the set of members of a class, one for each category:

Concrete members of a class C are all concrete de�nitions
M in C and its base classes, except if there is already a
concrete de�nition of a matching member in a preceding
(wrt L(c)) base class.

Abstract members of a class C are all abstract de�nitions
M in C and its base classes, except if C has a already con-
crete de�nition of a matching member or there is already an
abstract de�nition of a matching member in in a preceding
base class.

3One might disagree with this design choice because of its complex-
ity, but it is necessary to ensure interoperability, for instance when
inheriting from Java's Swing libraries.

These de�nitions also determines the overriding relation-
ships between matching members of a class C and its par-
ents. First, concrete de�nitions always override an abstract
de�nitions. Second, for de�nitions M and M ' which are
both concrete or both abstract, M overrides M ′ if M ap-
pears in a class that precedes in the linearization of C the
class in which M ′ is de�ned.

Super calls

Consider the following class of synchronized iterators, which
ensures that its operations are executed in a mutually ex-
clusive way when called concurrently from several threads.

trait SyncIterator[T] extends AbsIterator[T] {
abstract override def hasNext: boolean =
synchronized(super.hasNext)

abstract override def next: T =
synchronized(super.next)

}

To obtain rich, synchronized iterators over strings, one uses
a mixin composition involving three classes:

StringIterator(someString) with RichIterator[char]
with SyncIterator[char]

This composition inherits the two members hasNext and
next from the mixin class SyncIterator. Each method
wraps a synchronized application around a call to the cor-
responding member of its superclass.

Because RichIterator and StringIterator de�ne dif-
ferent sets of members, the order in which they appear in a
mixin composition does not matter. In the example above,
we could have equivalently written

StringIterator(someString) with SyncIterator[char]
with RichIterator[char]

There's a subtlety, however. The class accessed by the super
calls in SyncIterator is not its statically declared super-
class AbsIterator. This would not make sense, as hasNext
and next are abstract in this class. Instead, super accesses
the superclass StringIterator of the mixin composition in
which SyncIterator takes part. In a sense, the superclass in
a mixin composition overrides the statically declared super-
classes of its mixins. It follows that calls to super cannot be
statically resolved when a class is de�ned; their resolution
has to be deferred to the point where a class is instantiated
or inherited. This is made precise by the following de�nition.

Consider an expression super.M in a base class C of D.
To be type correct, this expression must refer statically to
some member M of a parent class of C. In the context of
D, the same expression then refers to a member M ′ which
matches M , and which appears in the �rst possible class
that follows C in the linearization of D.

Note �nally that in a language like Java or C#, the su-
per calls in class SyncIterator would be illegal, precisely
because they designate abstract members of the static su-
perclass. As we have seen, Scala allows this construction,
but it still has to make sure that the class is only used in
a context where super calls access members that are con-
cretely de�ned. This is enforced by the occurrence of the
abstract and override modi�ers in class SyncIterator. An
abstract override modi�er pair in a method de�nition in-
dicates that the method's de�nition is not yet complete be-
cause it overrides and uses an abstract member in a super-

12

class. A class with incomplete members must be declared
abstract itself, and subclasses of it can be instantiated only
once all members overridden by such incomplete members
have been rede�ned.

Calls to super may be threaded so that they follow the
class linearization (this is a major di�erence between Scala's
mixin composition and multiple inheritance schemes). For
example, consider another class similar to SyncIterator
which prints all returned elements on standard output.

trait LoggedIterator[T] extends AbsIterator[T] {
abstract override def next: T = {
val x = super.next; System.out.println(x); x

}
}

One can combine synchronized with logged iterators in a
mixin composition:

class Iter2 extends StringIterator(someString)
with SyncIterator[char]
with LoggedIterator[char]

The linearization of Iter2 is

{ Iter2, LoggedIterator, SyncIterator,
StringIterator, AbsIterator, AnyRef, Any }

Therefore, class Iter2 inherits its next method from
class LoggedIterator, the super.next call in this method
refers to the next method in class SyncIterator, whose
super.next call �nally refers to the next method in class
StringIterator.

If logging should be included in the synchronization, this
can be achieved by reversing the order of the mixins:

class Iter2 extends StringIterator(someString)
with LoggedIterator[char]
with SyncIterator[char]

In either case, calls to next follow via super the linearization
of class Iter2.

6.1 Service-Oriented Component Model

Scala's class abstraction and composition mechanism can be
seen as the basis for a service-oriented software component
model. Software components are units of computation that
provide a well-de�ned set of services. Typically, a software
component is not self-contained; i.e., its service implemen-
tations rely on a set of required services provided by other
cooperating components.

In Scala, software components correspond to classes and
traits. The concrete members of a class or trait represent
the provided services, deferred members can be seen as the
required services. The composition of components is based
on mixins, which allow programmers to create bigger com-
ponents from smaller ones.

The mixin-class composition mechanism of Scala iden-
ti�es services with the same name; for instance, a de-
ferred method m can be implemented by a class C de�n-
ing a concrete method m simply by mixing-in C. Thus,
the component composition mechanism associates automat-
ically required with provided services. Together with the
rule that concrete class members always override deferred
ones, this principle yields recursively pluggable components

where component services do not have to be wired explic-
itly [48].

This approach simpli�es the assembly of large compo-
nents with many recursive dependencies. It scales well even
in the presence of many required and provided services, since
the association of the two is automatically inferred by the
compiler. The most important advantage over traditional
black-box components is that components are extensible en-
tities: they can evolve by subclassing and overriding. They
can even be used to add new services to other existing com-
ponents, or to upgrade existing services of other compo-
nents. Overall, these features enable a smooth incremental
software evolution process.

7 Decomposition

7.1 Object-Oriented Decomposition

Often programmers have to deal with structured data. In
an object-oriented language, structured data would typically
be implemented by a set of classes representing the various
structural constructs. For inspecting structured data, a pro-
grammer can solely rely on virtual method calls of methods
provided by such classes.

Suppose we want to implement a simple evaluator for
algebraic terms consisting of numbers and a binary plus op-
eration. Using an object-oriented implementation scheme,
we can decompose the evaluator according to the term struc-
ture as follows:

abstract class Term {
def eval: int

}
class Num(x: int) extends Term {
def eval: int = x

}
class Plus(left: Term, right: Term) extends Term {
def eval: int = left.eval + right.eval

}

The given program models terms with the abstract class
Term which de�nes a deferred eval method. Concrete sub-
classes of Term model the various term variants. Such classes
have to provide concrete implementations for method eval.

Such an object-oriented decomposition scheme requires
the anticipation of all operations traversing a given struc-
ture. As a consequence, even internal methods sometimes
have to be exposed to some degree. Adding new methods
is tedious and error-prone, because it requires all classes
to be either changed or subclassed. A related problem is
that implementations of operations are distributed over all
participating classes making it di�cult to understand and
change them.

7.2 Pattern Matching Over Class Hierarchies

The program above is a good example for cases where a
functional decomposition scheme is more appropriate. In a
functional language, a programmer typically separates the
de�nition of the data structure from the implementation of
the operations. While data structures are usually de�ned
using algebraic datatypes, operations on such datatypes are
simply functions which use pattern matching as the basic
decomposition principle. Such an approach makes it pos-
sible to implement a single eval function without exposing

13

arti�cial auxiliary functions.
Scala provides a natural way for tackling the above pro-

gramming task in a functional way by supplying the pro-
grammer with a mechanism for creating structured data
representations similar to algebraic datatypes and a decom-
position mechanism based on pattern matching.

Instead of adding algebraic types to the core language,
Scala enhances the class abstraction mechanism to simplify
the construction of structured data. Classes tagged with
the case modi�er automatically de�ne a factory method
with the same arguments as the primary constructor. Fur-
thermore, Scala introduces pattern matching expressions in
which it is possible to use such constructors of case classes
as patterns. Using case classes, the algebraic term example
can be implemented as follows:

abstract class Term
case class Num(x: int) extends Term
case class Plus(left: Term, right: Term) extends Term

Given these de�nitions, it is now possible to create the alge-
braic term 1+2+3 without using the new primitive, simply
by calling the constructors associated with case classes:

Plus(Plus(Num(1), Num(2)), Num(3)) .

Scala's pattern matching expressions provide a means of de-
composition that uses these constructors as patterns. Here
is the implementation of the eval function using pattern
matching:

object Interpreter {
def eval(term: Term): int = term match {
case Num(x) => x
case Plus(left, right) => eval(left) + eval(right)

}
}

The matching expression x match { case pat1 => e1

case pat2 => e2 ...} matches value x against the patterns
pat1, pat2, etc. in the given order. The program above uses
patterns of the form Constr(x1, ..., xn) where Constr refers
to a case class constructor and xi denotes a variable. An ob-
ject matches such a pattern if it is an instance of the corre-
sponding case class. The matching process also instantiates
the variables of the �rst matching pattern and executes the
corresponding right-hand-side.

Such a functional decomposition scheme has the advan-
tage that new functions can be added easily to the system.
On the other hand, integrating a new case class might re-
quire changes in all pattern matching expressions. Some ap-
plications might also pro�t from the possibility of de�ning
nested patterns, or patterns with guards. For instance, the
pattern case Plus(x, y) if x == y => ... matches only
terms of the form t + t. The equivalence of the two vari-
ables x and y in the previous pattern is established with the
help of the guard x == y.

8 XML Processing

XML is a popular data format. Scala is designed to ease con-
struction and maintenance of programs that deal with XML.
It provides a data model for XML by means of traits and
particular subclasses. Processing of XML can then be done
by deconstructing the data using Scala's pattern matching
mechanism.

8.1 Data Model

Scala's data model for XML is an immutable representation
of an ordered unranked tree. In such a tree each node has
a label, a sequence of children nodes, and a map from at-
tribute keys to attribute values. This is speci�ed in the trait
scala.xml.Node which additionally contains equivalents of
the XPath operators child and descendant-or-self, which are
written \ and \\. Concrete subclasses exist for elements,
text nodes, comments, processing instructions, and entity
references.

XML syntax can be used directly in a Scala program,
e.g., in value de�nitions.

val labPhoneBook =
<phonebook>
<descr>Phone numbers ofXML hackers.</descr>
<entry>
<name>Burak</name>
<phone where="work"> +41 21 693 68 67 </phone>
<phone where="mobile"> +41 78 601 54 36 </phone>

</entry>
</phonebook>;

The value labPhoneBook is an XML tree; one of its nodes has
the label phone, a child sequence consisting of a text node
labeled by +41 2.., and a map from the attribute key where
to the value "work". Within XML syntax it is possible to es-
cape to Scala using the brackets { and } (similar to the con-
vention used in XQuery). For example, a date node with a
child text node consisting of the current date can be de�ned
by <date>{ df.format(new java.util.Date()) }</date>.

8.2 Schema Validation

Types of XML documents are typically speci�ed by so called
schemas. Popular schema formalisms are DTDs (Docu-
ment Type De�nitions) [7], XML Schema [19], and RELAX
NG [33]. At this moment a simple support for DTDs is
available through the dtd2scala tool. It converts a DTD to
a set of class de�nitions which can only be instantiated with
XML data that is valid with respect to the DTD. Existing
XML documents can then be validated against the DTD by
using a special load method which tries to instantiate the
corresponding classes (using pattern matching). In the fu-
ture, support for the richer set of types of XML Schema
is planned, including static type checking through regular
types.

8.3 Sequence Matching

XML nodes can be decomposed using pattern matching.
Scala allows to use XML syntax here too, albeit only to
match elements. The following example shows how to add
an entry to a phonebook element.

import scala.xml.Node ;
def add(phonebook: Node, newEntry: Node): Node =
phonebook match {
case <phonebook>{ cs @ _* }</phonebook> =>
<phonebook>{ cs }{ newEntry }</phonebook>

}
val newPhoneBook =
add(scala.xml.XML.loadFile("savedPhoneBook"),

<entry>
<name>Sebastian</name>
<phone where="work">+41 21 693 68 67</phone>

14

</entry>);

The add function performs a match on the phonebook ele-
ment, binding its child sequence to the variable cs (the pat-
tern _* matches an arbitrary sequence). Then it constructs
a new phonebook element with child sequence cs followed
by the node newEntry.

Sequence patterns consisting of or ending in _* extend
conventional algebraic patterns discussed in Section 7. with
the possibility of matching zero to arbitrary many elements
of a sequence. They can be applied to any sequence, i.e. any
instance of Seq[A] and to case classes that take repeated
parameters. The following example illustrates their use.

def findRest(z: Seq[Char]): Seq[Char] = z match {
case Seq(’G’, ’o’, ’o’, ’g’, ’l’, ’e’,

rest@_*) => rest
}

This pattern is used to check that a string starts with the
sequence of letters "Google". If the input z matches, then
the function returns what remains after the occurrence, oth-
erwise it generates a runtime error. A previous version of
Scala supported general regular expressions, but it seemed
the special case described above su�ces in most real life
scenarios, and avoids detection and translation of top-down
non-deterministic regular tree patterns, which interact badly
with Scala's rich pattern language.

8.4 XML Queries through For Comprehension

A pattern match determines at most one match of a pattern.
When querying XML one is often interested in locating all
matches to a query. Scala's �exible comprehension mecha-
nism can be used to query XML in a concise and elegant
style that closely resembles XQuery. In the following exam-
ple, we select all entry elements from labAddressbook and
from labPhoneBook into the variables a and p, respectively.
Whenever the name contents of two such entries coincide, a
result element is generated which has as children the ad-
dress and phone number, taken from the appropriate entry.

for (val a <- labAddressBook \\ "entry";
val p <- labPhoneBook \\ "entry";
a \ "name" == p \ "name") yield

<result>{ a.child }{ p \ "phone" }</result>

9 Component Adaptation

Even component systems with powerful constructs for ab-
straction and composition face a problem when it comes
to integrating sub-systems developed by di�erent groups at
di�erent times. The problem is that the interface of a com-
ponent developed by one group is often not quite right for
clients who wish to use that component. For instance, con-
sider a library with a class like GenList from Section 5. A
client of this library might wish to treat such lists as sets,
supporting operations such as member inclusion or contain-
ment tests. However, the provider of the class might not
have thought of this usage scenario, and consequently might
have left out these methods from the interface of GenList.

One might argue that inheritance can allow clients to tai-
lor the supported methods of a class to their requirements;
however this is only true if a client has control over all cre-

ation sites of the class. If the library also returns an opera-
tion such as

def fromArray(xs: Array[T]): GenList[T]

then inheritance cannot be used to turn a GenList into a
SetList after it has been returned from method fromArray.
One can circumvent this restriction to some degree by in-
cluding factory methods [21] in libraries. However, this in-
volves fairly complicated frameworks which are di�cult to
learn and instantiate, and it fails for library components that
inherit from classes that need to be extended by clients.

This unsatisfactory situation is commonly called the ex-
ternal extensibility problem. It has been argued that this
problem holds back the development of software components
to a mature industry where components are independently
manufactured and deployed [28].

Scala introduces a new concept to solve the external ex-
tensibility problem: views allow one to augment a class with
new members and supported traits.

Views are a special case of implicit parameters which
are themselves a useful tool for organizing rich functionality
in systems. Implicit parameters let one write generic code
analogous to Haskell's type classes [12], or, in a C++ con-
text, to Siek and Lumsdaine's �concepts� [43]. Unlike with
type classes, the scope of an implicit parameter can be con-
trolled, and competing implicit parameters can coexist in
di�erent parts of one program.

Motivation As an example, let's start with an abstract
class of semi-groups that support an unspeci�ed add opera-
tion.

abstract class SemiGroup[a] {
def add(x: a, y: a): a

}

Here's a subclass Monoid of SemiGroup which adds a unit
element.

abstract class Monoid[a] extends SemiGroup[a] {
def unit: a

}

Here are two implementations of monoids:

object Monoids {
object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}
object intMonoid extends Monoid[int] {
def add(x: Int, y: Int): Int = x + y
def unit: Int = 0

}
}

A sum method, which works over arbitrary monoids, can be
written in plain Scala as follows.

def sum[a](xs: List[a])(m: Monoid[a]): a =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail)(m))

One invokes this sum method by code such as:

sum(List("a", "bc", "def"))(Monoids.stringMonoid)
sum(List(1, 2, 3))(Monoids.intMonoid)

15

All this works, but it is not very nice. The problem is that
the monoid implementations have to be passed into all code
that uses them. We would sometimes wish that the system
could �gure out the correct arguments automatically, similar
to what is done when type arguments are inferred. This is
what implicit parameters provide.

Implicit Parameters: The Basics

The following slight rewrite of sum introduces m as an implicit
parameter.

def sum[a](xs: List[a])(implicit m: Monoid[a]): a =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail))

As can be seen from the example, it is possible to combine
normal and implicit parameters. However, there may only
be one implicit parameter list for a method or constructor,
and it must come last.

implicit can also be used as a modi�er for de�nitions
and declarations. Examples:

implicit object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}
implicit object intMonoid extends Monoid[int] {
def add(x: Int, y: Int): Int = x + y
def unit: Int = 0

}

The principal idea behind implicit parameters is that
arguments for them can be left out from a method call. If the
arguments corresponding to an implicit parameter section
are missing, they are inferred by the Scala compiler.

The actual arguments that are eligible to be passed to an
implicit parameter of type T are all identi�ers that denote
an implicit de�nition and which satisfy either one of the
following two criteria:

1. The identi�er can be accessed at the point of the
method call without a pre�x. This includes identi�ers
de�ned locally or in some enclosing scope, as well as
identi�ers inherited from base classes or imported from
other objects by an import clause.

2. Or the identi�er is de�ned in an object C which comes
with a class with the same name which is a baseclass
of the type parameter's type T (such object is called a
�companion object� of type T).

These criteria ensure a certain degree of locality of implicit
arguments. For instance, clients can tailor the set of avail-
able arguments by selectively importing objects which de�ne
the arguments they want to see passed to implicit parame-
ters.

If there are several eligible arguments which match the
implicit parameter's type, the Scala compiler will chose a
most speci�c one, using the standard rules of static over-
loading resolution. For instance, assume the call

sum(List(1, 2, 3))

in a context where stringMonoid and intMonoid are visible.
We know that the formal type parameter a of sum needs
to be instantiated to Int. The only eligible value which
matches the implicit formal parameter type Monoid[Int] is

intMonoid so this object will be passed as implicit parame-
ter.

This discussion also shows that implicit parameters are
inferred after any type arguments are inferred.

Implicit methods can themselves have implicit param-
eters. An example is the following method from module
scala.List, which injects lists into the scala.Ordered class,
provided the element type of the list is also convertible to
this type.

implicit def list2ordered[a](x: List[a])
(implicit elem2ordered: a => Ordered[a])
: Ordered[List[a]] =
...

Assume in addition a method

implicit def int2ordered(x: int): Ordered[int]

that injects integers into the Ordered class. We can now
de�ne a sort method over ordered lists:

def sort(xs: List[a])
(implicit a2ord: a => Ordered[a]) = ...

We can apply sort to a list of lists of integers
yss: List[List[int]] as follows:

sort(yss)

The Scala compiler will complete the call above by passing
two nested implicit arguments:

sort(yss)((xs: List[int]) => list2ordered[int](xs)(int2ordered)) .

The possibility of passing implicit arguments to implicit ar-
guments raises the possibility of an in�nite recursion. For in-
stance, one might try to de�ne the following method, which
injects every type into the Ordered class:

def magic[a](x: a)(implicit a2ordered: a => Ordered[a])
: Ordered[a] = a2ordered(x)

This function is of course too good to be true. Indeed, if one
tried to apply sort to an argument arg of a type that did
not have another injection into the Ordered class, one would
obtain an in�nite expansion:

sort(arg)(x => magic(x)(x => magic(x)(x => ...)))

To prevent such in�nite expansions, we require that every
implicit method de�nition is contractive. Here a method def-
inition is contractive if the type of every implicit parameter
type is �properly contained� [35] in the type that is obtained
by removing all implicit parameters from the method type
and converting the rest to a function type.

For instance, the type of list2ordered is

(List[a])(implicit a => Ordered[a]): Ordered[List[a]] .

This type is contractive, because the type of the implicit
parameter, a => Ordered[a], is properly contained in the
function type of the method without implicit parameters,
List[a] => Ordered[List[a]].

The type of magic is

(a)(implicit a => Ordered[a]): Ordered[a] .

This type is not contractive, because the type of the implicit
parameter, a => Ordered[a], is the same as the function

16

type of the method without implicit parameters.

Views

Views are implicit conversions between types. They are
typically de�ned to add some new functionality to a pre-
existing type. For instance, assume the following trait if
simple generic sets:

trait Set[T] {
def include(x: T): Set[T]
def contains(x: T): boolean

}

A view from class GenList to class Set is introduced by the
following method de�nition.

implicit def listToSet[T](xs: GenList[T]): Set[T] =
new Set[T] {
def include(x: T): Set[T] =
xs prepend x

def contains(x: T): boolean =
!isEmpty && (xs.head == x || (xs.tail contains x))

}

Hence, if xs is a GenList[T], then listToSet(xs) would
return a Set[T].

The only di�erence with respect to a normal method
de�nition is the implicit modi�er. This modi�er makes
views candidate arguments for implicit parameters, and also
causes them to be inserted automatically as implicit conver-
sions.

Say e is an expression of type T . A view is implicitly
applied to e in one of two possible situations: when the
expected type of e is not (a supertype of) T , or when a
member selected from e is not a member of T . For instance,
assume a value xs of type GenList[T] which is used in the
following two lines.

val s: Set[T] = xs;
xs contains x

The compiler would insert applications of the view de�ned
above into these lines as follows:

val s: Set[T] = listToSet(xs);
listToSet(xs) contains x

Which views are available for insertion? Scala uses the same
rules as for arguments to implicit parameters. A view is
available if it can be accessed without a pre�x or it is de�ned
in a companion object of either the source or the target type
of the conversion. An available view is applicable if can be
applied to the expression and it maps to the desired type,
or to any type containing the desired member, in the case
of a selection. Among all applicable candidates, Scala picks
the most speci�c view. Here, speci�city is interpreted in the
same way as for overloading resolution in Java and Scala. It
is an error if no view is applicable, or among the applicable
views no most speci�c one exists.

Views are used frequently in the Scala library to upgrade
Java's types to support new Scala traits. An example is
Scala's trait Ordered which de�nes a set of comparison op-
erations. Views from all basic types as well as class String
to this type are de�ned in a module scala.Predef. Since the
members of this module are imported implicitly into every
Scala program, the views are always available. From a user's

perspective, it is almost as if the Java classes are augmented
by the new traits.

View Bounds

As presented so far, view methods have to be visible stati-
cally at the point of their insertion. Views become even more
useful if one can abstract over the concrete view method
to be inserted. This can be expressed by making the view
an implicit parameter. An example is the following generic
maximum method, which returns the maximum element of a
non-empty list.

def maximum[T](xs: List[T])
(implicit t2ordered: T => Ordered[T]): unit = {

var mx = xs.head
for (val x <- xs.tail) if (mx < x) mx = x
mx

}

This maximum function can be applied to any argument of
type List[T], where T is viewable as Ordered[T]. In partic-
ular, we can apply maximum to lists of basic types for which
standard Ordered views exist.

Note that maximum uses a comparison operation (mx < x)
on values mx and x of type T. The type parameter T does
not have a comparison operation <, but there is the im-
plicit parameter t2ordered which maps T into a type which
does. Therefore, the comparison operation is rewritten to
(t2ordered(mx) < x).

The situation of associating a generic parameter with im-
plicit views is so common that Scala has special syntax for
it. A view bounded type parameter such as [T <% U] ex-
presses that Tmust come equipped with a view that maps its
values into values of type U. Using view bounds, the maximum
function above can be more concisely written as follows:

def maximum[T <% Ordered[T]](xs: List[T]): unit = ...

This code is expanded into precisely the previous code for
maximum.

10 Related Work

Scala's design is in�uenced by many di�erent languages and
research papers. The following enumeration of related work
lists the main design in�uences.

Of course, Scala adopts a large part of the concepts and
syntactic conventions of Java [23] and C# [15]. Scala's way
to express properties is loosely modelled after Sather [44].
From Smalltalk [22] comes the concept of a uniform ob-
ject model. From Beta [30] comes the idea that everything
should be nestable, including classes. Scala's design of mix-
ins comes from object-oriented linear mixins [6], but de�nes
mixin composition in a symmetric way, similar to what is
found in mixin modules [14, 25, 49] or traits [42]. Scala's
abstract types have close resemblances to abstract types of
signatures in the module systems of ML [24] and OCaml [29],
generalizing them to a context of �rst-class components.
For-comprehensions are based on Haskell's monad compre-
hensions [46], even though their syntax more closely resem-
bles XQuery [3]. Views have been in�uenced by Haskell's
type classes [47]. They can be seen as an object-oriented
version of parametric type classes [38], but they are more
general in that instance declarations can be local and are

17

scoped. Classboxes [2] provide the key bene�ts of views in
a dynamically typed system. Unlike views, they also permit
local rebinding so that class extensions can be selected using
dynamic dispatch.

In a sense, Scala represents a continuation of the work on
Pizza [37]. Like Pizza, Scala compiles to the JVM, adding
higher-order functions, generics and pattern matching, con-
structs which have been originally developed in the func-
tional programming community. Whereas Pizza is back-
wards compatible with Java, Scala's aim is only to be in-
teroperable, leaving more degrees of freedom in its design.

Scala's aim to provide advanced constructs for the ab-
straction and composition of components is shared by sev-
eral recent research e�orts. Abstract types are a more con-
servative construction to get most (but not all) of the ben-
e�ts of virtual classes in gbeta [16, 17]. Closely related are
also the delegation layers in FamilyJ [40] and work on nested
inheritance for Java [32]. Jiazzi [31] is an extension to Java
that adds a module mechanism based on units, a powerful
form of parametrized module. Jiazzi supports extensibility
idioms similar to Scala, such as the ability to implement
mixins.

The Nice programming language [4] is a recent object-
oriented language that is similar to Java, but has its her-
itage in ML≤ [5]. Nice includes multiple dispatch, open
classes, and a restricted form of retroactive abstraction
based on abstract interfaces. Nice does not support modular
implementation-side typechecking. While Nice and Scala are
languages which di�er signi�cantly from Java, they both are
designed to interoperate with Java programs and libraries,
and their compiler targets the JVM.

MultiJava [13] is a conservative extension of Java that
adds symmetric multiple dispatch and open classes. It pro-
vides alternative solutions to many of the problems that
Scala also addresses. For instance, multiple dispatch pro-
vides a solution to the binary method problem, which is
addressed by abstract types in Scala. Open classes provide
a solution to the external extensibility problem, which is
solved by views in Scala. A feature only found in Multi-
Java is the possibility to dynamically add new methods to
a class, since open classes are integrated with Java's regular
dynamic loading process. Conversely, only Scala allows to
delimit the scope of an external class extension in a program.

OCaml and Moby[20] are two alternative designs that
combine functional and object-oriented programming using
static typing. Unlike Scala, these two languages start with
a rich functional language including a sophisticated module
system and then build on these a comparatively lightweight
mechanism for classes.

11 Conclusion

Scala is both a large and a reasonably small language. It
is a large language in the sense that it has a rich syntax
and type system, combining concepts from object-oriented
programming and functional programming. Hence, there
are new constructs to be learned for users coming from ei-
ther language community. Much of Scala's diversity is also
caused by the motivation to stay close to conventional lan-
guages such as Java and C#, with the aim to ease adoption
of Scala by users of these languages.

Scala is also a reasonably small language, in the sense
that it builds on a modest set of very general concepts.
Many source level constructs are syntactic sugar, which can

be removed by encodings. Generalizations such as the uni-
form object model allow one to abstract from many dif-
ferent primitive types and operations, delegating them to
constructs in the Scala library.

Scala provides a powerful set of constructions for com-
posing, abstracting, and adapting components. The aim
is that with this set of components the language becomes
extensible enough so that users can model their domains
naturally in libraries and frameworks. Hence, there is less
pressure to extend the language, because most construc-
tions can be modeled conveniently in libraries. Examples of
this abound already in the Scala libraries and applications.
There are classes to model Erlang style actors, arbitrary pre-
cision integers, Horn clauses and constraints, to name just
three. All of these constructions can be written as naturally
as in a specialized language, yet integrate seamlessly into
Scala (and by extension, Java).

This approach to extensibility transfers to some degree
responsibility from language designers to users � it is still
as easy to design a bad libraries as it is to design a bad
language. But we hope that Scala's constructions will make
it easier to design good libraries than existing mainstream
languages.

Acknowledgments Scala's design and implementation
was partially supported by grants from the Swiss National
Fund under project NFS 21-61825, the Swiss National Com-
petence Center for Research MICS, the European Frame-
work 6 project PalCom, Microsoft Research, and the Hasler
Foundation. Gilad Bracha, Craig Chambers, Erik Ernst,
Matthias Felleisen, Shriram Krishnamurti, Gary Leavens,
Sebastian Maneth, Erik Mejer, Oscar Nierstrasz, Klaus Os-
termann, Didier Rémy, Mads Torgersen, and Philip Wadler
have shaped the design of the language through lively and
inspiring discussions. The contributors to the Scala mail-
ing list have also given very useful feedback that helped us
improve the language and its tools.

References

[1] K. Barrett, B. Cassels, P. Haahr, D. A. Moon, K. Play-
ford, and P. T. Withington. A monotonic superclass
linearization for Dylan. In Proc. OOPSLA, pages 69�
82. ACM Press, Oct 1996.

[2] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A
Minimal Module Model Supporting Local Rebinding.
In Proc. JMLC 2003, volume 2789 of Springer LNCS,
pages 122�131, 2003.

[3] S. Boag, D. Chamberlin, M. F. Fermandez, D. Flo-
rescu, J. Robie, and J. Simon. XQuery 1.0:
An XML Query Language. W3c recommenda-
tion, World Wide Web Consortium, November 2003.
http://www.w3.org/TR/xquery/.

[4] D. Bonniot and B. Keller. The Nice's user's manual, 2003.
http://nice.sourceforge.net/NiceManual.pdf.

[5] F. Bourdoncle and S. Merz. Type-checking Higher-Order
Polymorphic Multi-Methods. In Conference Record of
POPL '97: The 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 15�
17, Paris, France, 1997.

18

[6] G. Bracha and W. Cook. Mixin-Based Inheritance. In
N. Meyrowitz, editor, Proceedings of ECOOP '90, pages
303�311, Ottawa, Canada, October 1990. ACM Press.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau, eds. Extensible Markup Language
(XML) 1.0. W3C recommendation, World Wide
Web Consortium, February 2004. Available online
http://www.w3.org/TR/REC-xml-20040204/.

[8] K. B. Bruce, M. Odersky, and P. Wadler. A Statically Safe
Alternative to Virtual Types. Lecture Notes in Computer
Science, 1445, 1998. Proc. ESOP 1998.

[9] K. B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A
Type-Safe Polymorphic Object-Oriented Language. In Pro-
ceedings of ECOOP '95, LNCS 952, pages 27�51, Aarhus,
Denmark, August 1995. Springer-Verlag.

[10] P. Canning, W. Cook, W. Hill, W. Oltho�, and J. Mitchell.
F-Bounded Quanti�cation for Object-Oriented Program-
ming. In Proc. of 4th Int. Conf. on Functional Programming
and Computer Architecture, FPCA'89, London, pages 273�
280, New York, Sep 1989. ACM Pres.

[11] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An
Extension of System F with Subtyping. Information and
Computation, 109(1�2):4�56, 1994.

[12] K. Chen, P. Hudak, and M. Odersky. Parametric Type
Classes. In Proc. ACM Conf. on Lisp and Functional Pro-
gramming, pages 170�181, June 1992.

[13] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Design Rationale, Compiler Implementation,
and User Experience. Technical Report 04-01, Iowa State
University, Dept. of Computer Science, Jan 2004.

[14] D. Duggan. Mixin modules. In Proceedings of the ACM SIG-
PLAN International Conference on Functional Program-
ming (ICFP '96), volume 31(6), pages 262�273, 1996.

[15] ECMA. C# Language Speci�cation. Technical Report Stan-
dard ECMA-334, 2nd Edition, European Computer Manu-
facturers Association, December 2002.

[16] E. Ernst. Family polymorphism. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming, pages
303�326, Budapest, Hungary, 2001.

[17] E. Ernst. Higher-Order Hierarchies. In L. Cardelli, editor,
Proceedings ECOOP 2003, LNCS 2743, pages 303�329, Hei-
delberg, Germany, July 2003. Springer-Verlag.

[18] M. O. et.al. An introduction to Scala. Technical report,
EPFL Lausanne, Switzerland, Mar. 2006. Available online
http://scala.epfl.ch.

[19] D. C. Fallside, editor. XML Schema. W3C recommendation,
World Wide Web Consortium, May 2001. Available online
http://www.w3.org/TR/xmlschema-0/.

[20] K. Fisher and J. H. Reppy. The Design of a Class Mecha-
nism for Moby. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 37�49, 1999.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[22] A. Goldberg and D. Robson. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley, 1983.

[23] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Speci�cation. Java Series, Sun Microsystems, second
edition, 2000.

[24] R. Harper and M. Lillibridge. A Type-Theoretic Approach
to Higher-Order Modules with Sharing. In Proc. 21st ACM
Symposium on Principles of Programming Languages, Jan-
uary 1994.

[25] T. Hirschowitz and X. Leroy. Mixin Modules in a Call-by-
Value Setting. In European Symposium on Programming,
pages 6�20, 2002.

[26] A. Igarashi and M. Viroli. Variant Parametric Types: A
Flexible Subtyping Scheme for Generics. In Proceedings of
the Sixteenth European Conference on Object-Oriented Pro-
gramming (ECOOP2002), pages 441�469, June 2002.

[27] M. P. Jones. Using parameterized signatures to express mod-
ular structure. In Proceedings of the 23rd ACM Sympo-
sium on Principles of Programming Languages, pages 68�
78. ACM Press, 1996.

[28] R. Keller and U. Hölzle. Binary Component Adaptation. In
Proceedings ECOOP, Springer LNCS 1445, pages 307�329,
1998.

[29] X. Leroy. Manifest Types, Modules and Separate Compila-
tion. In Proc. 21st ACM Symposium on Principles of Pro-
gramming Languages, pages 109�122, January 1994.

[30] O. L. Madsen and B. Moeller-Pedersen. Virtual Classes - A
Powerful Mechanism for Object-Oriented Programming. In
Proc. OOPSLA'89, pages 397�406, October 1989.

[31] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age
Components for Old-Fashioned Java. In Proc. of OOPSLA,
October 2001.

[32] N. Nystrom, S. Chong, and A. Myers. Scalable Extensibility
via Nested Inheritance. In Proc. OOPSLA, Oct 2004.

[33] Oasis. RELAX NG. See http://www.oasis-open.org/.

[34] M. Odersky. Scala by example. Technical report,
EPFL Lausanne, Switzerland, Mar. 2006. Available online
http://scala.epfl.ch.

[35] M. Odersky. The Scala Language Speci�cation. Technical
report, EPFL Lausanne, Switzerland, Mar. 2006. Available
online http://scala.epfl.ch.

[36] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A
nominal theory of objects with dependent types. In Proc.
ECOOP'03, Springer LNCS 2743, jul 2003.

[37] M. Odersky and P. Wadler. Pizza into Java: Translating
theory into practice. In Proc. 24th ACM Symposium on
Principles of Programming Languages, pages 146�159, Jan-
uary 1997.

[38] M. Odersky, P. Wadler, and M. Wehr. A Second Look at
Overloading. In Proc. ACM Conf. on Functional Program-
ming and Computer Architecture, pages 135�146, June 1995.

[39] M. Odersky, C. Zenger, and M. Zenger. Colored Local Type
Inference. In Proceedings of the 28th ACM Symposium on
Principles of Programming Languages, pages 41�53, Lon-
don, UK, January 2001.

[40] K. Ostermann. Dynamically Composable Collaborations
with Delegation Layers. In Proceedings of the 16th Euro-
pean Conference on Object-Oriented Programming, Malaga,
Spain, 2002.

[41] B. C. Pierce and D. N. Turner. Local Type Inference. In
Proc. 25th ACM Symposium on Principles of Programming
Languages, pages 252�265, New York, NY, 1998.

19

[42] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable Units of Behavior. In Proceedings of the
17th European Conference on Object-Oriented Program-
ming, Darmstadt, Germany, June 2003.

[43] J. Siek and A. Lumsdaine. Essential Language Support for
generic programming. In PLDI '05: Proceedings of the ACM
SIGPLAN 2005 conference on Programming language de-
sign and implementation, pages 73�84, Jun 2005.

[44] D. Stoutamire and S. M. Omohundro. The Sather 1.0 Spec-
i�cation. Technical Report TR-95-057, International Com-
puter Science Institute, Berkeley, 1995.

[45] M. Torgersen, C. P. Hansen, E. Ernst, P. vod der Ahé,
G. Bracha, and N. Gafter. Adding Wildcards to the Java
Programming Language. In Proceedings SAC 2004, Nicosia,
Cyprus, March 2004.

[46] P. Wadler. The Essence of Functional Programming. In
Proc.19th ACM Symposium on Principles of Programming
Languages, pages 1�14, January 1992.

[47] P. Wadler and S. Blott. How to make ad-hoc Polymorphism
less ad-hoc. In Proc. 16th ACM Symposium on Principles
of Programming Languages, pages 60�76, January 1989.

[48] M. Zenger. Type-Safe Prototype-Based Component Evolu-
tion. In Proceedings of the European Conference on Object-
Oriented Programming, Málaga, Spain, June 2002.

[49] M. Zenger. Programming Language Abstractions for Ex-
tensible Software Components. PhD thesis, Department of
Computer Science, EPFL, Lausanne, March 2004.

20

	Introduction
	A Java-Like Language
	A Unified Object Model
	Classes
	Operations
	Variables and Properties

	Operations Are Objects
	Methods are Functional Values
	Functions are Objects
	Refining Functions
	Sequences
	For Comprehensions

	Abstraction
	Functional Abstraction
	Abstract Members
	Modeling Generics with Abstract Types

	Composition
	Service-Oriented Component Model

	Decomposition
	Object-Oriented Decomposition
	Pattern Matching Over Class Hierarchies

	XML Processing
	Data Model
	Schema Validation
	Sequence Matching
	XML Queries through For Comprehension

	Component Adaptation
	Related Work
	Conclusion

