abstract class AbstractPartialFunction[-T1, +R] extends (T1) ⇒ R with PartialFunction[T1, R]
AbstractPartialFunction
reformulates all operations of its supertrait PartialFunction
in terms of isDefinedAt
and applyOrElse
.
This allows more efficient implementations in many cases:
- optimized
orElse
method supports chainedorElse
in linear time, and with no slow-down if theorElse
part is not needed. - optimized
lift
method helps to avoid double evaluation of pattern matchers & guards of partial function literals.
This trait is used as a basis for implementation of all partial function literals.
- Self Type
- AbstractPartialFunction[T1, R]
- Source
- AbstractPartialFunction.scala
- Since
2.10
- Alphabetic
- By Inheritance
- AbstractPartialFunction
- PartialFunction
- Function1
- AnyRef
- Any
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- All
Instance Constructors
- new AbstractPartialFunction()
Abstract Value Members
-
abstract
def
isDefinedAt(x: T1): Boolean
Checks if a value is contained in the function's domain.
Checks if a value is contained in the function's domain.
- x
the value to test
- returns
true
, iffx
is in the domain of this function,false
otherwise.
- Definition Classes
- PartialFunction
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
Test two objects for inequality.
Test two objects for inequality.
- returns
true
if !(this == that), false otherwise.
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
Equivalent to
x.hashCode
except for boxed numeric types andnull
.Equivalent to
x.hashCode
except for boxed numeric types andnull
. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. Fornull
returns a hashcode wherenull.hashCode
throws aNullPointerException
.- returns
a hash value consistent with ==
- Definition Classes
- AnyRef → Any
-
def
+(other: String): String
- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to any2stringadd[AbstractPartialFunction[T1, R]] performed by method any2stringadd in scala.Predef.
- Definition Classes
- any2stringadd
-
def
->[B](y: B): (AbstractPartialFunction[T1, R], B)
- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to ArrowAssoc[AbstractPartialFunction[T1, R]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
- Annotations
- @inline()
-
final
def
==(arg0: Any): Boolean
The expression
x == that
is equivalent toif (x eq null) that eq null else x.equals(that)
.The expression
x == that
is equivalent toif (x eq null) that eq null else x.equals(that)
.- returns
true
if the receiver object is equivalent to the argument;false
otherwise.
- Definition Classes
- AnyRef → Any
-
def
andThen[C](k: (R) ⇒ C): PartialFunction[T1, C]
Composes this partial function with a transformation function that gets applied to results of this partial function.
Composes this partial function with a transformation function that gets applied to results of this partial function.
- C
the result type of the transformation function.
- k
the transformation function
- returns
a partial function with the same domain as this partial function, which maps arguments
x
tok(this(x))
.
- Definition Classes
- PartialFunction → Function1
-
def
apply(x: T1): R
Apply the body of this function to the argument.
Apply the body of this function to the argument.
- returns
the result of function application.
- Definition Classes
- AbstractPartialFunction → Function1
-
def
applyOrElse[A1 <: T1, B1 >: R](x: A1, default: (A1) ⇒ B1): B1
Applies this partial function to the given argument when it is contained in the function domain.
Applies this partial function to the given argument when it is contained in the function domain. Applies fallback function where this partial function is not defined.
Note that expression
pf.applyOrElse(x, default)
is equivalent toif(pf isDefinedAt x) pf(x) else default(x)
except that
applyOrElse
method can be implemented more efficiently. For all partial function literals the compiler generates anapplyOrElse
implementation which avoids double evaluation of pattern matchers and guards. This makesapplyOrElse
the basis for the efficient implementation for many operations and scenarios, such as:- combining partial functions into
orElse
/andThen
chains does not lead to excessiveapply
/isDefinedAt
evaluation lift
andunlift
do not evaluate source functions twice on each invocationrunWith
allows efficient imperative-style combining of partial functions with conditionally applied actions
For non-literal partial function classes with nontrivial
isDefinedAt
method it is recommended to overrideapplyOrElse
with custom implementation that avoids doubleisDefinedAt
evaluation. This may result in better performance and more predictable behavior w.r.t. side effects.- x
the function argument
- default
the fallback function
- returns
the result of this function or fallback function application.
- Definition Classes
- PartialFunction
- Since
2.10
- combining partial functions into
-
final
def
asInstanceOf[T0]: T0
Cast the receiver object to be of type
T0
.Cast the receiver object to be of type
T0
.Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression
1.asInstanceOf[String]
will throw aClassCastException
at runtime, while the expressionList(1).asInstanceOf[List[String]]
will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested type.- returns
the receiver object.
- Definition Classes
- Any
- Exceptions thrown
ClassCastException
if the receiver object is not an instance of the erasure of typeT0
.
-
def
clone(): AnyRef
Create a copy of the receiver object.
-
def
compose[A](g: (A) ⇒ T1): (A) ⇒ R
Composes two instances of Function1 in a new Function1, with this function applied last.
Composes two instances of Function1 in a new Function1, with this function applied last.
- A
the type to which function
g
can be applied- g
a function A => T1
- returns
a new function
f
such thatf(x) == apply(g(x))
- Definition Classes
- Function1
- Annotations
- @unspecialized()
-
def
ensuring(cond: (AbstractPartialFunction[T1, R]) ⇒ Boolean, msg: ⇒ Any): AbstractPartialFunction[T1, R]
- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to Ensuring[AbstractPartialFunction[T1, R]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
def
ensuring(cond: (AbstractPartialFunction[T1, R]) ⇒ Boolean): AbstractPartialFunction[T1, R]
- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to Ensuring[AbstractPartialFunction[T1, R]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
def
ensuring(cond: Boolean, msg: ⇒ Any): AbstractPartialFunction[T1, R]
- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to Ensuring[AbstractPartialFunction[T1, R]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
def
ensuring(cond: Boolean): AbstractPartialFunction[T1, R]
- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to Ensuring[AbstractPartialFunction[T1, R]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
final
def
eq(arg0: AnyRef): Boolean
Tests whether the argument (
that
) is a reference to the receiver object (this
).Tests whether the argument (
that
) is a reference to the receiver object (this
).The
eq
method implements an equivalence relation on non-null instances ofAnyRef
, and has three additional properties:- It is consistent: for any non-null instances
x
andy
of typeAnyRef
, multiple invocations ofx.eq(y)
consistently returnstrue
or consistently returnsfalse
. - For any non-null instance
x
of typeAnyRef
,x.eq(null)
andnull.eq(x)
returnsfalse
. null.eq(null)
returnstrue
.
When overriding the
equals
orhashCode
methods, it is important to ensure that their behavior is consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).- returns
true
if the argument is a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
- It is consistent: for any non-null instances
-
def
equals(arg0: Any): Boolean
The equality method for reference types.
-
def
finalize(): Unit
Called by the garbage collector on the receiver object when there are no more references to the object.
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the
finalize
method is invoked, as well as the interaction betweenfinalize
and non-local returns and exceptions, are all platform dependent.- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
- Note
not specified by SLS as a member of AnyRef
-
def
formatted(fmtstr: String): String
Returns string formatted according to given
format
string.Returns string formatted according to given
format
string. Format strings are as forString.format
(@see java.lang.String.format).- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to Predef.StringFormat[AbstractPartialFunction[T1, R]] performed by method StringFormat in scala.Predef.
- Definition Classes
- StringFormat
- Annotations
- @inline()
-
final
def
getClass(): Class[_]
Returns the runtime class representation of the object.
-
def
hashCode(): Int
The hashCode method for reference types.
-
final
def
isInstanceOf[T0]: Boolean
Test whether the dynamic type of the receiver object is
T0
.Test whether the dynamic type of the receiver object is
T0
.Note that the result of the test is modulo Scala's erasure semantics. Therefore the expression
1.isInstanceOf[String]
will returnfalse
, while the expressionList(1).isInstanceOf[List[String]]
will returntrue
. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the specified type.- returns
true
if the receiver object is an instance of erasure of typeT0
;false
otherwise.
- Definition Classes
- Any
-
def
lift: (T1) ⇒ Option[R]
Turns this partial function into a plain function returning an
Option
result.Turns this partial function into a plain function returning an
Option
result.- returns
a function that takes an argument
x
toSome(this(x))
ifthis
is defined forx
, and toNone
otherwise.
- Definition Classes
- PartialFunction
- See also
Function.unlift
-
final
def
ne(arg0: AnyRef): Boolean
Equivalent to
!(this eq that)
.Equivalent to
!(this eq that)
.- returns
true
if the argument is not a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
-
final
def
notifyAll(): Unit
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
-
def
orElse[A1 <: T1, B1 >: R](that: PartialFunction[A1, B1]): PartialFunction[A1, B1]
Composes this partial function with a fallback partial function which gets applied where this partial function is not defined.
Composes this partial function with a fallback partial function which gets applied where this partial function is not defined.
- A1
the argument type of the fallback function
- B1
the result type of the fallback function
- that
the fallback function
- returns
a partial function which has as domain the union of the domains of this partial function and
that
. The resulting partial function takesx
tothis(x)
wherethis
is defined, and tothat(x)
where it is not.
- Definition Classes
- PartialFunction
-
def
runWith[U](action: (R) ⇒ U): (T1) ⇒ Boolean
Composes this partial function with an action function which gets applied to results of this partial function.
Composes this partial function with an action function which gets applied to results of this partial function. The action function is invoked only for its side effects; its result is ignored.
Note that expression
pf.runWith(action)(x)
is equivalent toif(pf isDefinedAt x) { action(pf(x)); true } else false
except that
runWith
is implemented viaapplyOrElse
and thus potentially more efficient. UsingrunWith
avoids double evaluation of pattern matchers and guards for partial function literals.- action
the action function
- returns
a function which maps arguments
x
toisDefinedAt(x)
. The resulting function runsaction(this(x))
wherethis
is defined.
- Definition Classes
- PartialFunction
- Since
2.10
- See also
applyOrElse
.
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
Creates a String representation of this object.
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- final def wait(arg0: Long): Unit
-
def
→[B](y: B): (AbstractPartialFunction[T1, R], B)
- Implicit
- This member is added by an implicit conversion from AbstractPartialFunction[T1, R] to ArrowAssoc[AbstractPartialFunction[T1, R]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
This is the documentation for the Scala standard library.
Package structure
The scala package contains core types like
Int
,Float
,Array
orOption
which are accessible in all Scala compilation units without explicit qualification or imports.Notable packages include:
scala.collection
and its sub-packages contain Scala's collections frameworkscala.collection.immutable
- Immutable, sequential data-structures such asVector
,List
,Range
,HashMap
orHashSet
scala.collection.mutable
- Mutable, sequential data-structures such asArrayBuffer
,StringBuilder
,HashMap
orHashSet
scala.collection.concurrent
- Mutable, concurrent data-structures such asTrieMap
scala.collection.parallel.immutable
- Immutable, parallel data-structures such asParVector
,ParRange
,ParHashMap
orParHashSet
scala.collection.parallel.mutable
- Mutable, parallel data-structures such asParArray
,ParHashMap
,ParTrieMap
orParHashSet
scala.concurrent
- Primitives for concurrent programming such asFutures
andPromises
scala.io
- Input and output operationsscala.math
- Basic math functions and additional numeric types likeBigInt
andBigDecimal
scala.sys
- Interaction with other processes and the operating systemscala.util.matching
- Regular expressionsOther packages exist. See the complete list on the right.
Additional parts of the standard library are shipped as separate libraries. These include:
scala.reflect
- Scala's reflection API (scala-reflect.jar)scala.xml
- XML parsing, manipulation, and serialization (scala-xml.jar)scala.swing
- A convenient wrapper around Java's GUI framework called Swing (scala-swing.jar)scala.util.parsing
- Parser combinators (scala-parser-combinators.jar)Automatic imports
Identifiers in the scala package and the
scala.Predef
object are always in scope by default.Some of these identifiers are type aliases provided as shortcuts to commonly used classes. For example,
List
is an alias forscala.collection.immutable.List
.Other aliases refer to classes provided by the underlying platform. For example, on the JVM,
String
is an alias forjava.lang.String
.