sealed class ListSet[A] extends AbstractSet[A] with StrictOptimizedSetOps[A, ListSet, ListSet[A]] with IterableFactoryDefaults[A, ListSet] with DefaultSerializable
This class implements immutable sets using a list-based data structure. List set iterators and traversal methods visit elements in the order they were first inserted.
Elements are stored internally in reversed insertion order, which means the newest element is at
the head of the list. As such, methods such as head
and tail
are O(n), while last
and
init
are O(1). Other operations, such as inserting or removing entries, are also O(n), which
makes this collection suitable only for a small number of elements.
Instances of ListSet
represent empty sets; they can be either created by calling the
constructor directly, or by applying the function ListSet.empty
.
- A
the type of the elements contained in this list set
- Source
- ListSet.scala
- Alphabetic
- By Inheritance
- ListSet
- DefaultSerializable
- Serializable
- StrictOptimizedSetOps
- StrictOptimizedSetOps
- StrictOptimizedIterableOps
- AbstractSet
- Set
- SetOps
- Iterable
- AbstractSet
- Set
- Equals
- SetOps
- Function1
- AbstractIterable
- Iterable
- IterableFactoryDefaults
- IterableOps
- IterableOnceOps
- IterableOnce
- AnyRef
- Any
- by iterableOnceExtensionMethods
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- Protected
Instance Constructors
- new ListSet()
Type Members
Value Members
- final def !=(arg0: Any): Boolean
Test two objects for inequality.
Test two objects for inequality.
- returns
true
if !(this == that), false otherwise.
- Definition Classes
- AnyRef → Any
- final def ##: Int
Equivalent to
x.hashCode
except for boxed numeric types andnull
.Equivalent to
x.hashCode
except for boxed numeric types andnull
. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. Fornull
returns a hashcode wherenull.hashCode
throws aNullPointerException
.- returns
a hash value consistent with ==
- Definition Classes
- AnyRef → Any
- final def &(that: collection.Set[A]): ListSet[A]
Alias for
intersect
- final def &~(that: collection.Set[A]): ListSet[A]
Alias for
diff
- final def +(elem: A): ListSet[A]
Alias for
incl
- final def ++(that: IterableOnce[A]): ListSet[A]
Alias for
concat
- final def ++[B >: A](suffix: IterableOnce[B]): ListSet[B]
Alias for
concat
Alias for
concat
- Definition Classes
- IterableOps
- Annotations
- @inline()
- final def -(elem: A): ListSet[A]
Alias for
excl
- final def --(that: IterableOnce[A]): ListSet[A]
Alias for removedAll
- def ->[B](y: B): (ListSet[A], B)
- Implicit
- This member is added by an implicit conversion from ListSet[A] toArrowAssoc[ListSet[A]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
- Annotations
- @inline()
- final def ==(arg0: Any): Boolean
The expression
x == that
is equivalent toif (x eq null) that eq null else x.equals(that)
.The expression
x == that
is equivalent toif (x eq null) that eq null else x.equals(that)
.- returns
true
if the receiver object is equivalent to the argument;false
otherwise.
- Definition Classes
- AnyRef → Any
- final def addString(b: mutable.StringBuilder): b.type
Appends all elements of this list set to a string builder.
Appends all elements of this list set to a string builder. The written text consists of the string representations (w.r.t. the method
toString
) of all elements of this list set without any separator string.Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> val h = a.addString(b) h: StringBuilder = 1234
- b
the string builder to which elements are appended.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- final def addString(b: mutable.StringBuilder, sep: String): b.type
Appends all elements of this list set to a string builder using a separator string.
Appends all elements of this list set to a string builder using a separator string. The written text consists of the string representations (w.r.t. the method
toString
) of all elements of this list set, separated by the stringsep
.Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b, ", ") res0: StringBuilder = 1, 2, 3, 4
- b
the string builder to which elements are appended.
- sep
the separator string.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- def addString(b: mutable.StringBuilder, start: String, sep: String, end: String): b.type
Appends all elements of this list set to a string builder using start, end, and separator strings.
Appends all elements of this list set to a string builder using start, end, and separator strings. The written text begins with the string
start
and ends with the stringend
. Inside, the string representations (w.r.t. the methodtoString
) of all elements of this list set are separated by the stringsep
.Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b , "List(" , ", " , ")") res5: StringBuilder = List(1, 2, 3, 4)
- b
the string builder to which elements are appended.
- start
the starting string.
- sep
the separator string.
- end
the ending string.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- IterableOnceOps
- def andThen[A](g: (Boolean) => A): (A) => A
Composes two instances of Function1 in a new Function1, with this function applied first.
Composes two instances of Function1 in a new Function1, with this function applied first.
- A
the result type of function
g
- g
a function R => A
- returns
a new function
f
such thatf(x) == g(apply(x))
- Definition Classes
- Function1
- Annotations
- @unspecialized()
- final def apply(elem: A): Boolean
Tests if some element is contained in this set.
- final def asInstanceOf[T0]: T0
Cast the receiver object to be of type
T0
.Cast the receiver object to be of type
T0
.Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression
1.asInstanceOf[String]
will throw aClassCastException
at runtime, while the expressionList(1).asInstanceOf[List[String]]
will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested type.- returns
the receiver object.
- Definition Classes
- Any
- Exceptions thrown
ClassCastException
if the receiver object is not an instance of the erasure of typeT0
.
- def canEqual(that: Any): Boolean
A method that should be called from every well-designed equals method that is open to be overridden in a subclass.
A method that should be called from every well-designed equals method that is open to be overridden in a subclass. See Programming in Scala, Chapter 28 for discussion and design.
- that
the value being probed for possible equality
- returns
true if this instance can possibly equal
that
, otherwise false
- def className: String
Defines the prefix of this object's
toString
representation.Defines the prefix of this object's
toString
representation.It is recommended to return the name of the concrete collection type, but not implementation subclasses. For example, for
ListMap
this method should return"ListMap"
, not"Map"
(the supertype) or"Node"
(an implementation subclass).The default implementation returns "Iterable". It is overridden for the basic collection kinds "Seq", "IndexedSeq", "LinearSeq", "Buffer", "Set", "Map", "SortedSet", "SortedMap" and "View".
- returns
a string representation which starts the result of
toString
applied to this list set. By default the string prefix is the simple name of the collection class list set.
- def clone(): AnyRef
Create a copy of the receiver object.
Create a copy of the receiver object.
The default implementation of the
clone
method is platform dependent.- returns
a copy of the receiver object.
- final def coll: ListSet.this.type
- returns
This collection as a
C
.
- Attributes
- protected
- Definition Classes
- Iterable → IterableOps
- def collect[B](pf: PartialFunction[A, B]): ListSet[B]
Builds a new list set by applying a partial function to all elements of this list set on which the function is defined.
Builds a new list set by applying a partial function to all elements of this list set on which the function is defined.
- B
the element type of the returned list set.
- pf
the partial function which filters and maps the list set.
- returns
a new list set resulting from applying the given partial function
pf
to each element on which it is defined and collecting the results. The order of the elements is preserved.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def collectFirst[B](pf: PartialFunction[A, B]): Option[B]
Finds the first element of the list set for which the given partial function is defined, and applies the partial function to it.
Finds the first element of the list set for which the given partial function is defined, and applies the partial function to it.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- pf
the partial function
- returns
an option value containing pf applied to the first value for which it is defined, or
None
if none exists.
- Definition Classes
- IterableOnceOps
Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)
Example: - def compose[A](g: (A) => A): (A) => Boolean
Composes two instances of Function1 in a new Function1, with this function applied last.
Composes two instances of Function1 in a new Function1, with this function applied last.
- A
the type to which function
g
can be applied- g
a function A => T1
- returns
a new function
f
such thatf(x) == apply(g(x))
- Definition Classes
- Function1
- Annotations
- @unspecialized()
- def concat(that: IterableOnce[A]): ListSet[A]
Creates a new list set by adding all elements contained in another collection to this list set, omitting duplicates.
Creates a new list set by adding all elements contained in another collection to this list set, omitting duplicates.
This method takes a collection of elements and adds all elements, omitting duplicates, into list set.
Example:
scala> val a = Set(1, 2) concat Set(2, 3) a: scala.collection.immutable.Set[Int] = Set(1, 2, 3)
- that
the collection containing the elements to add.
- returns
a new list set with the given elements added, omitting duplicates.
- Definition Classes
- StrictOptimizedSetOps → StrictOptimizedSetOps → SetOps
- def concat[B >: A](suffix: IterableOnce[B]): ListSet[B]
Returns a new list set containing the elements from the left hand operand followed by the elements from the right hand operand.
Returns a new list set containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the list set is the most specific superclass encompassing the element types of the two operands.
- B
the element type of the returned collection.
- suffix
the iterable to append.
- returns
a new list set which contains all elements of this list set followed by all elements of
suffix
.
- Definition Classes
- IterableOps
- def contains(elem: A): Boolean
- def copyToArray[B >: A](xs: Array[B], start: Int, len: Int): Int
Copy elements to an array, returning the number of elements written.
Copy elements to an array, returning the number of elements written.
Fills the given array
xs
starting at indexstart
with at mostlen
elements of this list set.Copying will stop once either all the elements of this list set have been copied, or the end of the array is reached, or
len
elements have been copied.- B
the type of the elements of the array.
- xs
the array to fill.
- start
the starting index of xs.
- len
the maximal number of elements to copy.
- returns
the number of elements written to the array
- Definition Classes
- IterableOnceOps
- Note
Reuse: After calling this method, one should discard the iterator it was called on. Using it is undefined and subject to change.
- def copyToArray[B >: A](xs: Array[B], start: Int): Int
Copy elements to an array, returning the number of elements written.
Copy elements to an array, returning the number of elements written.
Fills the given array
xs
starting at indexstart
with values of this list set.Copying will stop once either all the elements of this list set have been copied, or the end of the array is reached.
- B
the type of the elements of the array.
- xs
the array to fill.
- start
the starting index of xs.
- returns
the number of elements written to the array
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- Note
Reuse: After calling this method, one should discard the iterator it was called on. Using it is undefined and subject to change.
- def copyToArray[B >: A](xs: Array[B]): Int
Copy elements to an array, returning the number of elements written.
Copy elements to an array, returning the number of elements written.
Fills the given array
xs
starting at indexstart
with values of this list set.Copying will stop once either all the elements of this list set have been copied, or the end of the array is reached.
- B
the type of the elements of the array.
- xs
the array to fill.
- returns
the number of elements written to the array
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- Note
Reuse: After calling this method, one should discard the iterator it was called on. Using it is undefined and subject to change.
- def corresponds[B](that: IterableOnce[B])(p: (A, B) => Boolean): Boolean
Tests whether every element of this collection's iterator relates to the corresponding element of another collection by satisfying a test predicate.
Tests whether every element of this collection's iterator relates to the corresponding element of another collection by satisfying a test predicate.
- B
the type of the elements of
that
- that
the other collection
- p
the test predicate, which relates elements from both collections
- returns
true
if both collections have the same length andp(x, y)
istrue
for all corresponding elementsx
of this iterator andy
ofthat
, otherwisefalse
- Definition Classes
- IterableOnceOps
- def count(p: (A) => Boolean): Int
Counts the number of elements in the list set which satisfy a predicate.
Counts the number of elements in the list set which satisfy a predicate.
- p
the predicate used to test elements.
- returns
the number of elements satisfying the predicate
p
.
- Definition Classes
- IterableOnceOps
- def diff(that: collection.Set[A]): ListSet[A]
Computes the difference of this set and another set.
- def drop(n: Int): ListSet[A]
Selects all elements except first n ones.
Selects all elements except first n ones.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
the number of elements to drop from this list set.
- returns
a list set consisting of all elements of this list set except the first
n
ones, or else the empty list set, if this list set has less thann
elements. Ifn
is negative, don't drop any elements.
- Definition Classes
- IterableOps → IterableOnceOps
- def dropRight(n: Int): ListSet[A]
The rest of the collection without its
n
last elements.The rest of the collection without its
n
last elements. For linear, immutable collections this should avoid making a copy.Note: Even when applied to a view or a lazy collection it will always force the elements.
- n
the number of elements to drop from this list set.
- returns
a list set consisting of all elements of this list set except the last
n
ones, or else the empty list set, if this list set has less thann
elements. Ifn
is negative, don't drop any elements.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def dropWhile(p: (A) => Boolean): ListSet[A]
Drops longest prefix of elements that satisfy a predicate.
Drops longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- p
The predicate used to test elements.
- returns
the longest suffix of this list set whose first element does not satisfy the predicate
p
.
- Definition Classes
- IterableOps → IterableOnceOps
- def elem: A
- Attributes
- protected
- def empty: ListSet[A]
The empty iterable of the same type as this iterable
The empty iterable of the same type as this iterable
- returns
an empty iterable of type
C
.
- Definition Classes
- IterableFactoryDefaults → IterableOps
- def ensuring(cond: (ListSet[A]) => Boolean, msg: => Any): ListSet[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toEnsuring[ListSet[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: (ListSet[A]) => Boolean): ListSet[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toEnsuring[ListSet[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: Boolean, msg: => Any): ListSet[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toEnsuring[ListSet[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: Boolean): ListSet[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toEnsuring[ListSet[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- final def eq(arg0: AnyRef): Boolean
Tests whether the argument (
that
) is a reference to the receiver object (this
).Tests whether the argument (
that
) is a reference to the receiver object (this
).The
eq
method implements an equivalence relation on non-null instances ofAnyRef
, and has three additional properties:- It is consistent: for any non-null instances
x
andy
of typeAnyRef
, multiple invocations ofx.eq(y)
consistently returnstrue
or consistently returnsfalse
. - For any non-null instance
x
of typeAnyRef
,x.eq(null)
andnull.eq(x)
returnsfalse
. null.eq(null)
returnstrue
.
When overriding the
equals
orhashCode
methods, it is important to ensure that their behavior is consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).- returns
true
if the argument is a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
- It is consistent: for any non-null instances
- def equals(that: Any): Boolean
Equality of sets is implemented using the lookup method contains.
Equality of sets is implemented using the lookup method contains. This method returns
true
if- the argument
that
is aSet
, - the two sets have the same size, and
- for every
element
this set,other.contains(element) == true
.
The implementation of
equals
checks the canEqual method, so subclasses ofSet
can narrow down the equality to specific set types. TheSet
implementations in the standard library can all be compared, theircanEqual
methods returntrue
.Note: The
equals
method only respects the equality laws (symmetry, transitivity) if the two sets use the same element equivalence function in their lookup operation. For example, the element equivalence operation in a scala.collection.immutable.TreeSet is defined by its ordering. Comparing aTreeSet
with aHashSet
leads to unexpected results ifordering.equiv(e1, e2)
(used for lookup inTreeSet
) is different frome1 == e2
(used for lookup inHashSet
).scala> import scala.collection.immutable._ scala> val ord: Ordering[String] = _ compareToIgnoreCase _ scala> TreeSet("A")(ord) == HashSet("a") val res0: Boolean = false scala> HashSet("a") == TreeSet("A")(ord) val res1: Boolean = true
- that
The set to which this set is compared
- returns
true
if the two sets are equal according to the description
- the argument
- def excl(elem: A): ListSet[A]
Creates a new set with a given element removed from this set.
- def exists(p: (A) => Boolean): Boolean
Tests whether a predicate holds for at least one element of this list set.
Tests whether a predicate holds for at least one element of this list set.
- p
the predicate used to test elements.
- returns
true
if the given predicatep
is satisfied by at least one element of this list set, otherwisefalse
- Definition Classes
- IterableOnceOps
- def filter(pred: (A) => Boolean): ListSet[A]
Selects all elements of this list set which satisfy a predicate.
Selects all elements of this list set which satisfy a predicate.
- returns
a new list set consisting of all elements of this list set that satisfy the given predicate
p
. The order of the elements is preserved.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def filterImpl(pred: (A) => Boolean, isFlipped: Boolean): ListSet[A]
- Attributes
- protected[collection]
- Definition Classes
- StrictOptimizedIterableOps
- def filterNot(pred: (A) => Boolean): ListSet[A]
Selects all elements of this list set which do not satisfy a predicate.
Selects all elements of this list set which do not satisfy a predicate.
- pred
the predicate used to test elements.
- returns
a new list set consisting of all elements of this list set that do not satisfy the given predicate
pred
. Their order may not be preserved.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def finalize(): Unit
Called by the garbage collector on the receiver object when there are no more references to the object.
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the
finalize
method is invoked, as well as the interaction betweenfinalize
and non-local returns and exceptions, are all platform dependent.- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- Note
not specified by SLS as a member of AnyRef
- def find(p: (A) => Boolean): Option[A]
Finds the first element of the list set satisfying a predicate, if any.
Finds the first element of the list set satisfying a predicate, if any.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- p
the predicate used to test elements.
- returns
an option value containing the first element in the list set that satisfies
p
, orNone
if none exists.
- Definition Classes
- IterableOnceOps
- def flatMap[B](f: (A) => IterableOnce[B]): ListSet[B]
Builds a new list set by applying a function to all elements of this list set and using the elements of the resulting collections.
Builds a new list set by applying a function to all elements of this list set and using the elements of the resulting collections.
For example:
def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")
The type of the resulting collection is guided by the static type of list set. This might cause unexpected results sometimes. For example:
// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet) // lettersOf will return a Set[Char], not a Seq def lettersOf(words: Seq[String]) = words.toSet flatMap ((word: String) => word.toSeq) // xs will be an Iterable[Int] val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2) // ys will be a Map[Int, Int] val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
- B
the element type of the returned collection.
- f
the function to apply to each element.
- returns
a new list set resulting from applying the given collection-valued function
f
to each element of this list set and concatenating the results.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def flatten[B](implicit toIterableOnce: (A) => IterableOnce[B]): ListSet[B]
Converts this list set of iterable collections into a list set formed by the elements of these iterable collections.
Converts this list set of iterable collections into a list set formed by the elements of these iterable collections.
The resulting collection's type will be guided by the type of list set. For example:
val xs = List( Set(1, 2, 3), Set(1, 2, 3) ).flatten // xs == List(1, 2, 3, 1, 2, 3) val ys = Set( List(1, 2, 3), List(3, 2, 1) ).flatten // ys == Set(1, 2, 3)
- B
the type of the elements of each iterable collection.
- returns
a new list set resulting from concatenating all element list sets.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1
Folds the elements of this list set using the specified associative binary operator.
Folds the elements of this list set using the specified associative binary operator. The default implementation in
IterableOnce
is equivalent tofoldLeft
but may be overridden for more efficient traversal orders.The order in which operations are performed on elements is unspecified and may be nondeterministic.
- A1
a type parameter for the binary operator, a supertype of
A
.- z
a neutral element for the fold operation; may be added to the result an arbitrary number of times, and must not change the result (e.g.,
Nil
for list concatenation, 0 for addition, or 1 for multiplication).- op
a binary operator that must be associative.
- returns
the result of applying the fold operator
op
between all the elements andz
, orz
if this list set is empty.
- Definition Classes
- IterableOnceOps
- def foldLeft[B](z: B)(op: (B, A) => B): B
Applies a binary operator to a start value and all elements of this list set, going left to right.
Applies a binary operator to a start value and all elements of this list set, going left to right.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- z
the start value.
- op
the binary operator.
- returns
the result of inserting
op
between consecutive elements of this list set, going left to right with the start valuez
on the left:op(...op(z, x1), x2, ..., xn)
wherex1, ..., xn
are the elements of this list set. Returnsz
if this list set is empty.
- Definition Classes
- IterableOnceOps
- def foldRight[B](z: B)(op: (A, B) => B): B
Applies a binary operator to all elements of this list set and a start value, going right to left.
Applies a binary operator to all elements of this list set and a start value, going right to left.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- z
the start value.
- op
the binary operator.
- returns
the result of inserting
op
between consecutive elements of this list set, going right to left with the start valuez
on the right:op(x1, op(x2, ... op(xn, z)...))
wherex1, ..., xn
are the elements of this list set. Returnsz
if this list set is empty.
- Definition Classes
- IterableOnceOps
- def forall(p: (A) => Boolean): Boolean
Tests whether a predicate holds for all elements of this list set.
Tests whether a predicate holds for all elements of this list set.
- p
the predicate used to test elements.
- returns
true
if this list set is empty or the given predicatep
holds for all elements of this list set, otherwisefalse
.
- Definition Classes
- IterableOnceOps
- def foreach[U](f: (A) => U): Unit
Apply
f
to each element for its side effects Note: [U] parameter needed to help scalac's type inference.Apply
f
to each element for its side effects Note: [U] parameter needed to help scalac's type inference.- Definition Classes
- IterableOnceOps
- def fromSpecific(coll: IterableOnce[A]): ListSet[A]
Defines how to turn a given
Iterable[A]
into a collection of typeC
.Defines how to turn a given
Iterable[A]
into a collection of typeC
.This process can be done in a strict way or a non-strict way (ie. without evaluating the elements of the resulting collections). In other words, this methods defines the evaluation model of the collection.
- Attributes
- protected
- Definition Classes
- IterableFactoryDefaults → IterableOps
- Note
When implementing a custom collection type and refining
,C
to the new type, this method needs to be overridden (the compiler will issue an error otherwise). In the common case whereC =:= CC[A]
, this can be done by mixing in the scala.collection.IterableFactoryDefaults trait, which implements the method using iterableFactory.As witnessed by the
@uncheckedVariance
annotation, using this method might be unsound. However, as long as it is called with anIterable[A]
obtained fromthis
collection (as it is the case in the implementations of operations where we use aView[A]
), it is safe.
- final def getClass(): Class[_ <: AnyRef]
Returns the runtime class representation of the object.
- def groupBy[K](f: (A) => K): Map[K, ListSet[A]]
Partitions this list set into a map of list sets according to some discriminator function.
Partitions this list set into a map of list sets according to some discriminator function.
Note: Even when applied to a view or a lazy collection it will always force the elements.
- K
the type of keys returned by the discriminator function.
- f
the discriminator function.
- returns
A map from keys to list sets such that the following invariant holds:
(xs groupBy f)(k) = xs filter (x => f(x) == k)
That is, every key
k
is bound to a list set of those elementsx
for whichf(x)
equalsk
.
- Definition Classes
- IterableOps
- def groupMap[K, B](key: (A) => K)(f: (A) => B): Map[K, ListSet[B]]
Partitions this list set into a map of list sets according to a discriminator function
key
.Partitions this list set into a map of list sets according to a discriminator function
key
. Each element in a group is transformed into a value of typeB
using thevalue
function.It is equivalent to
groupBy(key).mapValues(_.map(f))
, but more efficient.case class User(name: String, age: Int) def namesByAge(users: Seq[User]): Map[Int, Seq[String]] = users.groupMap(_.age)(_.name)
Note: Even when applied to a view or a lazy collection it will always force the elements.
- K
the type of keys returned by the discriminator function
- B
the type of values returned by the transformation function
- key
the discriminator function
- f
the element transformation function
- Definition Classes
- IterableOps
- def groupMapReduce[K, B](key: (A) => K)(f: (A) => B)(reduce: (B, B) => B): Map[K, B]
Partitions this list set into a map according to a discriminator function
key
.Partitions this list set into a map according to a discriminator function
key
. All the values that have the same discriminator are then transformed by thef
function and then reduced into a single value with thereduce
function.It is equivalent to
groupBy(key).mapValues(_.map(f).reduce(reduce))
, but more efficient.def occurrences[A](as: Seq[A]): Map[A, Int] = as.groupMapReduce(identity)(_ => 1)(_ + _)
Note: Even when applied to a view or a lazy collection it will always force the elements.
- Definition Classes
- IterableOps
- def grouped(size: Int): Iterator[ListSet[A]]
Partitions elements in fixed size list sets.
Partitions elements in fixed size list sets.
- size
the number of elements per group
- returns
An iterator producing list sets of size
size
, except the last will be less than sizesize
if the elements don't divide evenly.
- Definition Classes
- IterableOps
- See also
scala.collection.Iterator, method
grouped
- def hashCode(): Int
The hashCode method for reference types.
- def head: A
Selects the first element of this list set.
Selects the first element of this list set.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
the first element of this list set.
- Definition Classes
- IterableOps
- Exceptions thrown
NoSuchElementException
if the list set is empty.
- def headOption: Option[A]
Optionally selects the first element.
Optionally selects the first element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
the first element of this list set if it is nonempty,
None
if it is empty.
- Definition Classes
- IterableOps
- def incl(elem: A): ListSet[A]
Creates a new set with an additional element, unless the element is already present.
- def init: ListSet[A]
The initial part of the collection without its last element.
The initial part of the collection without its last element.
Note: Even when applied to a view or a lazy collection it will always force the elements.
- Definition Classes
- IterableOps
- def inits: Iterator[ListSet[A]]
Iterates over the inits of this list set.
Iterates over the inits of this list set. The first value will be this list set and the final one will be an empty list set, with the intervening values the results of successive applications of
init
.Note: Even when applied to a view or a lazy collection it will always force the elements.
- returns
an iterator over all the inits of this list set
- Definition Classes
- IterableOps
List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)
Example: - def intersect(that: collection.Set[A]): ListSet[A]
Computes the intersection between this set and another set.
Computes the intersection between this set and another set.
- that
the set to intersect with.
- returns
a new set consisting of all elements that are both in this set and in the given set
that
.
- Definition Classes
- SetOps
- def isEmpty: Boolean
Tests whether the list set is empty.
Tests whether the list set is empty.
Note: Implementations in subclasses that are not repeatedly iterable must take care not to consume any elements when
isEmpty
is called.- returns
true
if the list set contains no elements,false
otherwise.
- Definition Classes
- ListSet → IterableOnceOps
- final def isInstanceOf[T0]: Boolean
Test whether the dynamic type of the receiver object has the same erasure as
T0
.Test whether the dynamic type of the receiver object has the same erasure as
T0
.Depending on what
T0
is, the test is done in one of the below ways:T0
is a non-parameterized class type, e.g.BigDecimal
: this method returnstrue
if the value of the receiver object is aBigDecimal
or a subtype ofBigDecimal
.T0
is a parameterized class type, e.g.List[Int]
: this method returnstrue
if the value of the receiver object is someList[X]
for anyX
. For example,List(1, 2, 3).isInstanceOf[List[String]]
will return true.T0
is some singleton typex.type
or literalx
: this method returnsthis.eq(x)
. For example,x.isInstanceOf[1]
is equivalent tox.eq(1)
T0
is an intersectionX with Y
orX & Y: this method is equivalent to
x.isInstanceOf[X] && x.isInstanceOf[Y]T0
is a unionX | Y
: this method is equivalent tox.isInstanceOf[X] || x.isInstanceOf[Y]
T0
is a type parameter or an abstract type member: this method is equivalent toisInstanceOf[U]
whereU
isT0
's upper bound,Any
ifT0
is unbounded. For example,x.isInstanceOf[A]
whereA
is an unbounded type parameter will return true for any value ofx
.
This is exactly equivalent to the type pattern
_: T0
- returns
true
if the receiver object is an instance of erasure of typeT0
;false
otherwise.
- Definition Classes
- Any
- Note
due to the unexpectedness of
List(1, 2, 3).isInstanceOf[List[String]]
returning true andx.isInstanceOf[A]
whereA
is a type parameter or abstract member returning true, these forms issue a warning.
- def isTraversableAgain: Boolean
Tests whether this list set can be repeatedly traversed.
Tests whether this list set can be repeatedly traversed. Always true for Iterables and false for Iterators unless overridden.
- returns
true
if it is repeatedly traversable,false
otherwise.
- Definition Classes
- IterableOps → IterableOnceOps
- def iterableFactory: IterableFactory[ListSet]
The companion object of this list set, providing various factory methods.
The companion object of this list set, providing various factory methods.
- def iterator: Iterator[A]
Iterator can be used only once
Iterator can be used only once
- Definition Classes
- ListSet → IterableOnce
- def knownSize: Int
- returns
The number of elements in this list set, if it can be cheaply computed, -1 otherwise. Cheaply usually means: Not requiring a collection traversal.
- Definition Classes
- ListSet → IterableOnce
- def last: A
Selects the last element.
Selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
The last element of this list set.
- Definition Classes
- IterableOps
- Exceptions thrown
NoSuchElementException
If the list set is empty.
- def lastOption: Option[A]
Optionally selects the last element.
Optionally selects the last element.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- returns
the last element of this list set$ if it is nonempty,
None
if it is empty.
- Definition Classes
- IterableOps
- def lazyZip[B](that: collection.Iterable[B]): LazyZip2[A, B, ListSet.this.type]
Analogous to
zip
except that the elements in each collection are not consumed until a strict operation is invoked on the returnedLazyZip2
decorator.Analogous to
zip
except that the elements in each collection are not consumed until a strict operation is invoked on the returnedLazyZip2
decorator.Calls to
lazyZip
can be chained to support higher arities (up to 4) without incurring the expense of constructing and deconstructing intermediary tuples.val xs = List(1, 2, 3) val res = (xs lazyZip xs lazyZip xs lazyZip xs).map((a, b, c, d) => a + b + c + d) // res == List(4, 8, 12)
- B
the type of the second element in each eventual pair
- that
the iterable providing the second element of each eventual pair
- returns
a decorator
LazyZip2
that allows strict operations to be performed on the lazily evaluated pairs or chained calls tolazyZip
. Implicit conversion toIterable[(A, B)]
is also supported.
- Definition Classes
- Iterable
- def map[B](f: (A) => B): ListSet[B]
Builds a new list set by applying a function to all elements of this list set.
Builds a new list set by applying a function to all elements of this list set.
- B
the element type of the returned list set.
- f
the function to apply to each element.
- returns
a new list set resulting from applying the given function
f
to each element of this list set and collecting the results.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def max[B >: A](implicit ord: math.Ordering[B]): A
Finds the largest element.
Finds the largest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
the largest element of this list set with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this list set is empty.
- def maxBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
Finds the first element which yields the largest value measured by function f.
Finds the first element which yields the largest value measured by function f.
- B
The result type of the function f.
- f
The measuring function.
- cmp
An ordering to be used for comparing elements.
- returns
the first element of this list set with the largest value measured by function f with respect to the ordering
cmp
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this list set is empty.
- def maxByOption[B](f: (A) => B)(implicit cmp: math.Ordering[B]): Option[A]
Finds the first element which yields the largest value measured by function f.
Finds the first element which yields the largest value measured by function f.
- B
The result type of the function f.
- f
The measuring function.
- cmp
An ordering to be used for comparing elements.
- returns
an option value containing the first element of this list set with the largest value measured by function f with respect to the ordering
cmp
.
- Definition Classes
- IterableOnceOps
- def maxOption[B >: A](implicit ord: math.Ordering[B]): Option[A]
Finds the largest element.
Finds the largest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
an option value containing the largest element of this list set with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- def min[B >: A](implicit ord: math.Ordering[B]): A
Finds the smallest element.
Finds the smallest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
the smallest element of this list set with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this list set is empty.
- def minBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
Finds the first element which yields the smallest value measured by function f.
Finds the first element which yields the smallest value measured by function f.
- B
The result type of the function f.
- f
The measuring function.
- cmp
An ordering to be used for comparing elements.
- returns
the first element of this list set with the smallest value measured by function f with respect to the ordering
cmp
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this list set is empty.
- def minByOption[B](f: (A) => B)(implicit cmp: math.Ordering[B]): Option[A]
Finds the first element which yields the smallest value measured by function f.
Finds the first element which yields the smallest value measured by function f.
- B
The result type of the function f.
- f
The measuring function.
- cmp
An ordering to be used for comparing elements.
- returns
an option value containing the first element of this list set with the smallest value measured by function f with respect to the ordering
cmp
.
- Definition Classes
- IterableOnceOps
- def minOption[B >: A](implicit ord: math.Ordering[B]): Option[A]
Finds the smallest element.
Finds the smallest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
an option value containing the smallest element of this list set with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- final def mkString: String
Displays all elements of this list set in a string.
Displays all elements of this list set in a string.
Delegates to addString, which can be overridden.
- returns
a string representation of this list set. In the resulting string the string representations (w.r.t. the method
toString
) of all elements of this list set follow each other without any separator string.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- final def mkString(sep: String): String
Displays all elements of this list set in a string using a separator string.
Displays all elements of this list set in a string using a separator string.
Delegates to addString, which can be overridden.
- sep
the separator string.
- returns
a string representation of this list set. In the resulting string the string representations (w.r.t. the method
toString
) of all elements of this list set are separated by the stringsep
.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
List(1, 2, 3).mkString("|") = "1|2|3"
Example: - final def mkString(start: String, sep: String, end: String): String
Displays all elements of this list set in a string using start, end, and separator strings.
Displays all elements of this list set in a string using start, end, and separator strings.
Delegates to addString, which can be overridden.
- start
the starting string.
- sep
the separator string.
- end
the ending string.
- returns
a string representation of this list set. The resulting string begins with the string
start
and ends with the stringend
. Inside, the string representations (w.r.t. the methodtoString
) of all elements of this list set are separated by the stringsep
.
- Definition Classes
- IterableOnceOps
List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"
Example: - final def ne(arg0: AnyRef): Boolean
Equivalent to
!(this eq that)
.Equivalent to
!(this eq that)
.- returns
true
if the argument is not a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
- def newSpecificBuilder: Builder[A, ListSet[A]]
- returns
a strict builder for the same collection type. Note that in the case of lazy collections (e.g. scala.collection.View or scala.collection.immutable.LazyList), it is possible to implement this method but the resulting
Builder
will break laziness. As a consequence, operations should preferably be implemented withfromSpecific
instead of this method.
- Attributes
- protected
- Definition Classes
- IterableFactoryDefaults → IterableOps
- Note
When implementing a custom collection type and refining
,C
to the new type, this method needs to be overridden (the compiler will issue an error otherwise). In the common case whereC =:= CC[A]
, this can be done by mixing in the scala.collection.IterableFactoryDefaults trait, which implements the method using iterableFactory.As witnessed by the
@uncheckedVariance
annotation, using this method might be unsound. However, as long as the returned builder is only fed withA
values taken fromthis
instance, it is safe.
- def next: ListSet[A]
- Attributes
- protected
- def nonEmpty: Boolean
Tests whether the list set is not empty.
Tests whether the list set is not empty.
- returns
true
if the list set contains at least one element,false
otherwise.
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- final def notify(): Unit
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
- final def notifyAll(): Unit
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
- def partition(p: (A) => Boolean): (ListSet[A], ListSet[A])
A pair of, first, all elements that satisfy predicate
p
and, second, all elements that do not.A pair of, first, all elements that satisfy predicate
p
and, second, all elements that do not. Interesting because it splits a collection in two.The default implementation provided here needs to traverse the collection twice. Strict collections have an overridden version of
partition
inStrictOptimizedIterableOps
, which requires only a single traversal.- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def partitionMap[A1, A2](f: (A) => Either[A1, A2]): (ListSet[A1], ListSet[A2])
Applies a function
f
to each element of the list set and returns a pair of list sets: the first one made of those values returned byf
that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.Applies a function
f
to each element of the list set and returns a pair of list sets: the first one made of those values returned byf
that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.Example:
val xs = ListSet(1, "one", 2, "two", 3, "three") partitionMap { case i: Int => Left(i) case s: String => Right(s) } // xs == (ListSet(1, 2, 3), // ListSet(one, two, three))
- A1
the element type of the first resulting collection
- A2
the element type of the second resulting collection
- f
the 'split function' mapping the elements of this list set to an scala.util.Either
- returns
a pair of list sets: the first one made of those values returned by
f
that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def product[B >: A](implicit num: math.Numeric[B]): B
Multiplies up the elements of this collection.
Multiplies up the elements of this collection.
- B
the result type of the
*
operator.- num
an implicit parameter defining a set of numeric operations which includes the
*
operator to be used in forming the product.- returns
the product of all elements of this list set with respect to the
*
operator innum
.
- Definition Classes
- IterableOnceOps
- def reduce[B >: A](op: (B, B) => B): B
Reduces the elements of this list set using the specified associative binary operator.
Reduces the elements of this list set using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
- B
A type parameter for the binary operator, a supertype of
A
.- op
A binary operator that must be associative.
- returns
The result of applying reduce operator
op
between all the elements if the list set is nonempty.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this list set is empty.
- def reduceLeft[B >: A](op: (B, A) => B): B
Applies a binary operator to all elements of this list set, going left to right.
Applies a binary operator to all elements of this list set, going left to right.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
the result of inserting
op
between consecutive elements of this list set, going left to right:op( op( ... op(x1, x2) ..., xn-1), xn)
wherex1, ..., xn
are the elements of this list set.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this list set is empty.
- def reduceLeftOption[B >: A](op: (B, A) => B): Option[B]
Optionally applies a binary operator to all elements of this list set, going left to right.
Optionally applies a binary operator to all elements of this list set, going left to right.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
an option value containing the result of
reduceLeft(op)
if this list set is nonempty,None
otherwise.
- Definition Classes
- IterableOnceOps
- def reduceOption[B >: A](op: (B, B) => B): Option[B]
Reduces the elements of this list set, if any, using the specified associative binary operator.
Reduces the elements of this list set, if any, using the specified associative binary operator.
The order in which operations are performed on elements is unspecified and may be nondeterministic.
- B
A type parameter for the binary operator, a supertype of
A
.- op
A binary operator that must be associative.
- returns
An option value containing result of applying reduce operator
op
between all the elements if the collection is nonempty, andNone
otherwise.
- Definition Classes
- IterableOnceOps
- def reduceRight[B >: A](op: (A, B) => B): B
Applies a binary operator to all elements of this list set, going right to left.
Applies a binary operator to all elements of this list set, going right to left.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
the result of inserting
op
between consecutive elements of this list set, going right to left:op(x1, op(x2, ..., op(xn-1, xn)...))
wherex1, ..., xn
are the elements of this list set.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this list set is empty.
- def reduceRightOption[B >: A](op: (A, B) => B): Option[B]
Optionally applies a binary operator to all elements of this list set, going right to left.
Optionally applies a binary operator to all elements of this list set, going right to left.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
the result type of the binary operator.
- op
the binary operator.
- returns
an option value containing the result of
reduceRight(op)
if this list set is nonempty,None
otherwise.
- Definition Classes
- IterableOnceOps
- def removedAll(that: IterableOnce[A]): ListSet[A]
Creates a new list set from this list set by removing all elements of another collection.
Creates a new list set from this list set by removing all elements of another collection.
- that
the collection containing the elements to remove.
- returns
a new list set with the given elements removed, omitting duplicates.
- Definition Classes
- SetOps
- def reversed: collection.Iterable[A]
- Attributes
- protected
- Definition Classes
- IterableOnceOps
- def scan[B >: A](z: B)(op: (B, B) => B): ListSet[B]
Computes a prefix scan of the elements of the collection.
Computes a prefix scan of the elements of the collection.
Note: The neutral element
z
may be applied more than once.- B
element type of the resulting collection
- z
neutral element for the operator
op
- op
the associative operator for the scan
- returns
a new list set containing the prefix scan of the elements in this list set
- Definition Classes
- IterableOps
- def scanLeft[B](z: B)(op: (B, A) => B): ListSet[B]
Produces a list set containing cumulative results of applying the operator going left to right, including the initial value.
Produces a list set containing cumulative results of applying the operator going left to right, including the initial value.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- B
the type of the elements in the resulting collection
- z
the initial value
- op
the binary operator applied to the intermediate result and the element
- returns
collection with intermediate results
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def scanRight[B](z: B)(op: (A, B) => B): ListSet[B]
Produces a collection containing cumulative results of applying the operator going right to left.
Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.
Note: might return different results for different runs, unless the underlying collection type is ordered.
Note: Even when applied to a view or a lazy collection it will always force the elements.
Example:
List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
- B
the type of the elements in the resulting collection
- z
the initial value
- op
the binary operator applied to the intermediate result and the element
- returns
collection with intermediate results
- Definition Classes
- IterableOps
- def size: Int
The size of this list set.
The size of this list set.
- returns
the number of elements in this list set.
- Definition Classes
- ListSet → IterableOnceOps
- def sizeCompare(that: collection.Iterable[_]): Int
Compares the size of this list set to the size of another
Iterable
.Compares the size of this list set to the size of another
Iterable
.- that
the
Iterable
whose size is compared with this list set's size.- returns
A value
x
wherex < 0 if this.size < that.size x == 0 if this.size == that.size x > 0 if this.size > that.size
The method as implemented here does not call
size
directly; its running time isO(this.size min that.size)
instead ofO(this.size + that.size)
. The method should be overridden if computingsize
is cheap andknownSize
returns-1
.
- Definition Classes
- IterableOps
- def sizeCompare(otherSize: Int): Int
Compares the size of this list set to a test value.
Compares the size of this list set to a test value.
- otherSize
the test value that gets compared with the size.
- returns
A value
x
wherex < 0 if this.size < otherSize x == 0 if this.size == otherSize x > 0 if this.size > otherSize
The method as implemented here does not call
size
directly; its running time isO(size min otherSize)
instead ofO(size)
. The method should be overridden if computingsize
is cheap andknownSize
returns-1
.
- Definition Classes
- IterableOps
- See also
- final def sizeIs: SizeCompareOps
Returns a value class containing operations for comparing the size of this list set to a test value.
Returns a value class containing operations for comparing the size of this list set to a test value.
These operations are implemented in terms of
sizeCompare(Int)
, and allow the following more readable usages:this.sizeIs < size // this.sizeCompare(size) < 0 this.sizeIs <= size // this.sizeCompare(size) <= 0 this.sizeIs == size // this.sizeCompare(size) == 0 this.sizeIs != size // this.sizeCompare(size) != 0 this.sizeIs >= size // this.sizeCompare(size) >= 0 this.sizeIs > size // this.sizeCompare(size) > 0
- Definition Classes
- IterableOps
- Annotations
- @inline()
- def slice(from: Int, until: Int): ListSet[A]
Selects an interval of elements.
Selects an interval of elements. The returned list set is made up of all elements
x
which satisfy the invariant:from <= indexOf(x) < until
Note: might return different results for different runs, unless the underlying collection type is ordered.
- from
the lowest index to include from this list set.
- until
the lowest index to EXCLUDE from this list set.
- returns
a list set containing the elements greater than or equal to index
from
extending up to (but not including) indexuntil
of this list set.
- Definition Classes
- IterableOps → IterableOnceOps
- def sliding(size: Int, step: Int): Iterator[ListSet[A]]
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)
The returned iterator will be empty when called on an empty collection. The last element the iterator produces may be smaller than the window size when the original collection isn't exhausted by the window before it and its last element isn't skipped by the step before it.
- size
the number of elements per group
- step
the distance between the first elements of successive groups
- returns
An iterator producing list sets of size
size
, except the last element (which may be the only element) will be smaller if there are fewer thansize
elements remaining to be grouped.
- Definition Classes
- IterableOps
List(1, 2, 3, 4, 5).sliding(2, 2) = Iterator(List(1, 2), List(3, 4), List(5))
, List(1, 2, 3, 4, 5, 6).sliding(2, 3) = Iterator(List(1, 2), List(4, 5))
- See also
scala.collection.Iterator, method
sliding
Examples: - def sliding(size: Int): Iterator[ListSet[A]]
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in
grouped
.)Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in
grouped
.)An empty collection returns an empty iterator, and a non-empty collection containing fewer elements than the window size returns an iterator that will produce the original collection as its only element.
- size
the number of elements per group
- returns
An iterator producing list sets of size
size
, except for a non-empty collection with less thansize
elements, which returns an iterator that produces the source collection itself as its only element.
- Definition Classes
- IterableOps
List().sliding(2) = empty iterator
, List(1).sliding(2) = Iterator(List(1))
, List(1, 2).sliding(2) = Iterator(List(1, 2))
, List(1, 2, 3).sliding(2) = Iterator(List(1, 2), List(2, 3))
- See also
scala.collection.Iterator, method
sliding
Examples: - def span(p: (A) => Boolean): (ListSet[A], ListSet[A])
Splits this list set into a prefix/suffix pair according to a predicate.
Splits this list set into a prefix/suffix pair according to a predicate.
Note:
c span p
is equivalent to (but possibly more efficient than)(c takeWhile p, c dropWhile p)
, provided the evaluation of the predicatep
does not cause any side-effects.Note: might return different results for different runs, unless the underlying collection type is ordered.
- p
the test predicate
- returns
a pair consisting of the longest prefix of this list set whose elements all satisfy
p
, and the rest of this list set.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def splitAt(n: Int): (ListSet[A], ListSet[A])
Splits this list set into a prefix/suffix pair at a given position.
Splits this list set into a prefix/suffix pair at a given position.
Note:
c splitAt n
is equivalent to (but possibly more efficient than)(c take n, c drop n)
.Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
the position at which to split.
- returns
a pair of list sets consisting of the first
n
elements of this list set, and the other elements.
- Definition Classes
- IterableOps → IterableOnceOps
- def stepper[S <: Stepper[_]](implicit shape: StepperShape[A, S]): S
Returns a scala.collection.Stepper for the elements of this collection.
Returns a scala.collection.Stepper for the elements of this collection.
The Stepper enables creating a Java stream to operate on the collection, see scala.jdk.StreamConverters. For collections holding primitive values, the Stepper can be used as an iterator which doesn't box the elements.
The implicit scala.collection.StepperShape parameter defines the resulting Stepper type according to the element type of this collection.
- For collections of
Int
,Short
,Byte
orChar
, an scala.collection.IntStepper is returned - For collections of
Double
orFloat
, a scala.collection.DoubleStepper is returned - For collections of
Long
a scala.collection.LongStepper is returned - For any other element type, an scala.collection.AnyStepper is returned
Note that this method is overridden in subclasses and the return type is refined to
S with EfficientSplit
, for example scala.collection.IndexedSeqOps.stepper. For Steppers marked with scala.collection.Stepper.EfficientSplit, the converters in scala.jdk.StreamConverters allow creating parallel streams, whereas bare Steppers can be converted only to sequential streams.- Definition Classes
- IterableOnce
- For collections of
- final def strictOptimizedCollect[B, C2](b: Builder[B, C2], pf: PartialFunction[A, B]): C2
- B
Type of elements of the resulting collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[String]
)- b
Builder to use to build the resulting collection
- pf
Element transformation partial function
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedConcat[B >: A, C2](that: IterableOnce[B], b: Builder[B, C2]): C2
- B
Type of elements of the resulting collections (e.g.
Int
)- C2
Type of the resulting collection (e.g.
List[Int]
)- that
Elements to concatenate to this collection
- b
Builder to use to build the resulting collection
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedFlatMap[B, C2](b: Builder[B, C2], f: (A) => IterableOnce[B]): C2
- B
Type of elements of the resulting collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[String]
)- b
Builder to use to build the resulting collection
- f
Element transformation function
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedFlatten[B, C2](b: Builder[B, C2])(implicit toIterableOnce: (A) => IterableOnce[B]): C2
- B
Type of elements of the resulting collection (e.g.
Int
)- C2
Type of the resulting collection (e.g.
List[Int]
)- b
Builder to use to build the resulting collection
- toIterableOnce
Evidence that
A
can be seen as anIterableOnce[B]
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedMap[B, C2](b: Builder[B, C2], f: (A) => B): C2
- B
Type of elements of the resulting collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[String]
)- b
Builder to use to build the resulting collection
- f
Element transformation function
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedZip[B, C2](that: IterableOnce[B], b: Builder[(A, B), C2]): C2
- B
Type of elements of the second collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[(Int, String)]
)- that
Collection to zip with this collection
- b
Builder to use to build the resulting collection
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- def stringPrefix: String
- def subsetOf(that: collection.Set[A]): Boolean
Tests whether this set is a subset of another set.
Tests whether this set is a subset of another set.
- that
the set to test.
- returns
true
if this set is a subset ofthat
, i.e. if every element of this set is also an element ofthat
.
- Definition Classes
- SetOps
- def subsets(): Iterator[ListSet[A]]
An iterator over all subsets of this set.
- def subsets(len: Int): Iterator[ListSet[A]]
An iterator over all subsets of this set of the given size.
An iterator over all subsets of this set of the given size. If the requested size is impossible, an empty iterator is returned.
- len
the size of the subsets.
- returns
the iterator.
- Definition Classes
- SetOps
- def sum[B >: A](implicit num: math.Numeric[B]): B
Sums up the elements of this collection.
Sums up the elements of this collection.
- B
the result type of the
+
operator.- num
an implicit parameter defining a set of numeric operations which includes the
+
operator to be used in forming the sum.- returns
the sum of all elements of this list set with respect to the
+
operator innum
.
- Definition Classes
- IterableOnceOps
- final def synchronized[T0](arg0: => T0): T0
Executes the code in
body
with an exclusive lock onthis
.Executes the code in
body
with an exclusive lock onthis
.- returns
the result of
body
- Definition Classes
- AnyRef
- def tail: ListSet[A]
The rest of the collection without its first element.
The rest of the collection without its first element.
- Definition Classes
- IterableOps
- def tails: Iterator[ListSet[A]]
Iterates over the tails of this list set.
Iterates over the tails of this list set. The first value will be this list set and the final one will be an empty list set, with the intervening values the results of successive applications of
tail
.- returns
an iterator over all the tails of this list set
- Definition Classes
- IterableOps
List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)
Example: - def take(n: Int): ListSet[A]
Selects the first n elements.
Selects the first n elements.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- n
the number of elements to take from this list set.
- returns
a list set consisting only of the first
n
elements of this list set, or else the whole list set, if it has less thann
elements. Ifn
is negative, returns an empty list set.
- Definition Classes
- IterableOps → IterableOnceOps
- def takeRight(n: Int): ListSet[A]
A collection containing the last
n
elements of this collection.A collection containing the last
n
elements of this collection.Note: Even when applied to a view or a lazy collection it will always force the elements.
- n
the number of elements to take from this list set.
- returns
a list set consisting only of the last
n
elements of this list set, or else the whole list set, if it has less thann
elements. Ifn
is negative, returns an empty list set.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def takeWhile(p: (A) => Boolean): ListSet[A]
Takes longest prefix of elements that satisfy a predicate.
Takes longest prefix of elements that satisfy a predicate.
Note: might return different results for different runs, unless the underlying collection type is ordered.
- p
The predicate used to test elements.
- returns
the longest prefix of this list set whose elements all satisfy the predicate
p
.
- Definition Classes
- IterableOps → IterableOnceOps
- def tapEach[U](f: (A) => U): ListSet[A]
Applies a side-effecting function to each element in this collection.
Applies a side-effecting function to each element in this collection. Strict collections will apply
f
to their elements immediately, while lazy collections like Views and LazyLists will only applyf
on each element if and when that element is evaluated, and each time that element is evaluated.- U
the return type of f
- f
a function to apply to each element in this list set
- returns
The same logical collection as this
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def to[C1](factory: Factory[A, C1]): C1
Given a collection factory
factory
, convert this collection to the appropriate representation for the current element typeA
.Given a collection factory
factory
, convert this collection to the appropriate representation for the current element typeA
. Example uses:xs.to(List) xs.to(ArrayBuffer) xs.to(BitSet) // for xs: Iterable[Int]
- Definition Classes
- IterableOnceOps
- def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]
Convert collection to array.
Convert collection to array.
Implementation note: DO NOT call Array.from from this method.
- Definition Classes
- IterableOnceOps
- final def toBuffer[B >: A]: Buffer[B]
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- def toIndexedSeq: IndexedSeq[A]
- Definition Classes
- IterableOnceOps
- def toList: List[A]
- Definition Classes
- IterableOnceOps
- def toMap[K, V](implicit ev: <:<[A, (K, V)]): Map[K, V]
- Definition Classes
- IterableOnceOps
- def toSeq: Seq[A]
- returns
This collection as a
Seq[A]
. This is equivalent toto(Seq)
but might be faster.
- Definition Classes
- IterableOnceOps
- def toSet[B >: A]: Set[B]
- Definition Classes
- IterableOnceOps
- def toString(): String
Creates a String representation of this object.
Creates a String representation of this object. The default representation is platform dependent. On the java platform it is the concatenation of the class name, "@", and the object's hashcode in hexadecimal.
- returns
a String representation of the object.
- def toVector: Vector[A]
- Definition Classes
- IterableOnceOps
- def transpose[B](implicit asIterable: (A) => collection.Iterable[B]): ListSet[ListSet[B]]
Transposes this list set of iterable collections into a list set of list sets.
Transposes this list set of iterable collections into a list set of list sets.
The resulting collection's type will be guided by the static type of list set. For example:
val xs = List( Set(1, 2, 3), Set(4, 5, 6)).transpose // xs == List( // List(1, 4), // List(2, 5), // List(3, 6)) val ys = Vector( List(1, 2, 3), List(4, 5, 6)).transpose // ys == Vector( // Vector(1, 4), // Vector(2, 5), // Vector(3, 6))
Note: Even when applied to a view or a lazy collection it will always force the elements.
- B
the type of the elements of each iterable collection.
- asIterable
an implicit conversion which asserts that the element type of this list set is an
Iterable
.- returns
a two-dimensional list set of list sets which has as nth row the nth column of this list set.
- Definition Classes
- IterableOps
- Exceptions thrown
IllegalArgumentException
if all collections in this list set are not of the same size.
- final def union(that: collection.Set[A]): ListSet[A]
Computes the union between of set and another set.
- def unzip[A1, A2](implicit asPair: (A) => (A1, A2)): (ListSet[A1], ListSet[A2])
Converts this list set of pairs into two collections of the first and second half of each pair.
Converts this list set of pairs into two collections of the first and second half of each pair.
val xs = ListSet( (1, "one"), (2, "two"), (3, "three")).unzip // xs == (ListSet(1, 2, 3), // ListSet(one, two, three))
- A1
the type of the first half of the element pairs
- A2
the type of the second half of the element pairs
- asPair
an implicit conversion which asserts that the element type of this list set is a pair.
- returns
a pair of list sets, containing the first, respectively second half of each element pair of this list set.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def unzip3[A1, A2, A3](implicit asTriple: (A) => (A1, A2, A3)): (ListSet[A1], ListSet[A2], ListSet[A3])
Converts this list set of triples into three collections of the first, second, and third element of each triple.
Converts this list set of triples into three collections of the first, second, and third element of each triple.
val xs = ListSet( (1, "one", '1'), (2, "two", '2'), (3, "three", '3')).unzip3 // xs == (ListSet(1, 2, 3), // ListSet(one, two, three), // ListSet(1, 2, 3))
- A1
the type of the first member of the element triples
- A2
the type of the second member of the element triples
- A3
the type of the third member of the element triples
- asTriple
an implicit conversion which asserts that the element type of this list set is a triple.
- returns
a triple of list sets, containing the first, second, respectively third member of each element triple of this list set.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def view: View[A]
A view over the elements of this collection.
A view over the elements of this collection.
- Definition Classes
- IterableOps
- final def wait(): Unit
See https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait--.
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- Note
not specified by SLS as a member of AnyRef
- final def wait(arg0: Long, arg1: Int): Unit
See https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait-long-int-
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- Note
not specified by SLS as a member of AnyRef
- final def wait(arg0: Long): Unit
See https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait-long-.
- def withFilter(p: (A) => Boolean): WithFilter[A, [_]ListSet[_]]
Creates a non-strict filter of this list set.
Creates a non-strict filter of this list set.
Note: the difference between
c filter p
andc withFilter p
is that the former creates a new collection, whereas the latter only restricts the domain of subsequentmap
,flatMap
,foreach
, andwithFilter
operations.Note: might return different results for different runs, unless the underlying collection type is ordered.
- p
the predicate used to test elements.
- returns
an object of class
WithFilter
, which supportsmap
,flatMap
,foreach
, andwithFilter
operations. All these operations apply to those elements of this list set which satisfy the predicatep
.
- Definition Classes
- IterableOps
- def writeReplace(): AnyRef
- Attributes
- protected[this]
- Definition Classes
- DefaultSerializable
- def zip[B](that: IterableOnce[B]): ListSet[(A, B)]
Returns a list set formed from this list set and another iterable collection by combining corresponding elements in pairs.
Returns a list set formed from this list set and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
- B
the type of the second half of the returned pairs
- that
The iterable providing the second half of each result pair
- returns
a new list set containing pairs consisting of corresponding elements of this list set and
that
. The length of the returned collection is the minimum of the lengths of this list set andthat
.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def zipAll[A1 >: A, B](that: collection.Iterable[B], thisElem: A1, thatElem: B): ListSet[(A1, B)]
Returns a list set formed from this list set and another iterable collection by combining corresponding elements in pairs.
Returns a list set formed from this list set and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
- that
the iterable providing the second half of each result pair
- thisElem
the element to be used to fill up the result if this list set is shorter than
that
.- thatElem
the element to be used to fill up the result if
that
is shorter than this list set.- returns
a new collection of type
That
containing pairs consisting of corresponding elements of this list set andthat
. The length of the returned collection is the maximum of the lengths of this list set andthat
. If this list set is shorter thanthat
,thisElem
values are used to pad the result. Ifthat
is shorter than this list set,thatElem
values are used to pad the result.
- Definition Classes
- IterableOps
- def zipWithIndex: ListSet[(A, Int)]
Zips this list set with its indices.
Zips this list set with its indices.
- returns
A new list set containing pairs consisting of all elements of this list set paired with their index. Indices start at
0
.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
List("a", "b", "c").zipWithIndex == List(("a", 0), ("b", 1), ("c", 2))
Example: - final def |(that: collection.Set[A]): ListSet[A]
Alias for
union
Shadowed Implicit Value Members
- def +(other: String): String
- Implicit
- This member is added by an implicit conversion from ListSet[A] toany2stringadd[ListSet[A]] performed by method any2stringadd in scala.Predef.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: any2stringadd[ListSet[A]]).+(other)
- Definition Classes
- any2stringadd
Deprecated Value Members
- def +(elem1: A, elem2: A, elems: A*): ListSet[A]
- Definition Classes
- SetOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use ++ with an explicit collection argument instead of + with varargs
- def ++:[B >: A](that: IterableOnce[B]): ListSet[B]
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use ++ instead of ++: for collections of type Iterable
- def -(elem1: A, elem2: A, elems: A*): ListSet[A]
- Definition Classes
- SetOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use &- with an explicit collection argument instead of - with varargs
- def /:[B](z: B)(op: (B, A) => B): B
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A])./:(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldLeft instead
- final def /:[B](z: B)(op: (B, A) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use foldLeft instead of /:
- def :\[B](z: B)(op: (A, B) => B): B
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).:\(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldRight instead
- final def :\[B](z: B)(op: (A, B) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use foldRight instead of :\
- def aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0)
aggregate
is not relevant for sequential collections. UsefoldLeft(z)(seqop)
instead.
- def collectFirst[B](f: PartialFunction[A, B]): Option[B]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).collectFirst(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.collectFirst(...) instead
- def companion: IterableFactory[[_]ListSet[_]]
- Definition Classes
- IterableOps
- Annotations
- @deprecated @deprecatedOverriding() @inline()
- Deprecated
(Since version 2.13.0) Use iterableFactory instead
- def copyToBuffer(dest: Buffer[A]): Unit
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).copyToBuffer(dest)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.copyToBuffer(...) instead
- final def copyToBuffer[B >: A](dest: Buffer[B]): Unit
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use
dest ++= coll
instead
- def count(f: (A) => Boolean): Int
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).count(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.count(...) instead
- def exists(f: (A) => Boolean): Boolean
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).exists(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.exists(...) instead
- def filter(f: (A) => Boolean): Iterator[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).filter(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.filter(...) instead
- def find(p: (A) => Boolean): Option[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).find(p)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.find instead
- def flatMap[B](f: (A) => IterableOnce[B]): IterableOnce[B]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).flatMap(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.flatMap instead or consider requiring an Iterable
- def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).fold(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.fold instead
- def foldLeft[B](z: B)(op: (B, A) => B): B
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).foldLeft(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldLeft instead
- def foldRight[B](z: B)(op: (A, B) => B): B
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).foldRight(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldRight instead
- def forall(f: (A) => Boolean): Boolean
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).forall(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.forall(...) instead
- def foreach[U](f: (A) => U): Unit
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).foreach(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foreach(...) instead
- def formatted(fmtstr: String): String
Returns string formatted according to given
format
string.Returns string formatted according to given
format
string. Format strings are as forString.format
(@see java.lang.String.format).- Implicit
- This member is added by an implicit conversion from ListSet[A] toStringFormat[ListSet[A]] performed by method StringFormat in scala.Predef.
- Definition Classes
- StringFormat
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.12.16) Use
formatString.format(value)
instead ofvalue.formatted(formatString)
, or use thef""
string interpolator. In Java 15 and later,formatted
resolves to the new method in String which has reversed parameters.
- def hasDefiniteSize: Boolean
Tests whether this list set is known to have a finite size.
Tests whether this list set is known to have a finite size. All strict collections are known to have finite size. For a non-strict collection such as
Stream
, the predicate returnstrue
if all elements have been computed. It returnsfalse
if the stream is not yet evaluated to the end. Non-empty Iterators usually returnfalse
even if they were created from a collection with a known finite size.Note: many collection methods will not work on collections of infinite sizes. The typical failure mode is an infinite loop. These methods always attempt a traversal without checking first that
hasDefiniteSize
returnstrue
. However, checkinghasDefiniteSize
can provide an assurance that size is well-defined and non-termination is not a concern.- returns
true
if this collection is known to have finite size,false
otherwise.
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Check .knownSize instead of .hasDefiniteSize for more actionable information (see scaladoc for details)
- See also
method
knownSize
for a more useful alternative
- def isEmpty: Boolean
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).isEmpty
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.isEmpty instead
- def map[B](f: (A) => B): IterableOnce[B]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).map(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.map instead or consider requiring an Iterable
- def max(implicit ord: math.Ordering[A]): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).max(ord)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.max instead
- def maxBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).maxBy(f)(cmp)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.maxBy(...) instead
- def min(implicit ord: math.Ordering[A]): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).min(ord)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.min instead
- def minBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).minBy(f)(cmp)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.minBy(...) instead
- def mkString: String
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).mkString
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.mkString instead
- def mkString(sep: String): String
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).mkString(sep)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.mkString instead
- def mkString(start: String, sep: String, end: String): String
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).mkString(start, sep, end)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.mkString instead
- def nonEmpty: Boolean
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).nonEmpty
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.nonEmpty instead
- def product(implicit num: math.Numeric[A]): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).product(num)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.product instead
- def reduce(f: (A, A) => A): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).reduce(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduce(...) instead
- def reduceLeft(f: (A, A) => A): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).reduceLeft(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceLeft(...) instead
- def reduceLeftOption(f: (A, A) => A): Option[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).reduceLeftOption(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceLeftOption(...) instead
- def reduceOption(f: (A, A) => A): Option[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).reduceOption(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceOption(...) instead
- def reduceRight(f: (A, A) => A): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).reduceRight(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceRight(...) instead
- def reduceRightOption(f: (A, A) => A): Option[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).reduceRightOption(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceRightOption(...) instead
- final def repr: ListSet[A]
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use coll instead of repr in a collection implementation, use the collection value itself from the outside
- def sameElements[B >: A](that: IterableOnce[B]): Boolean
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.sameElements instead
- def seq: ListSet.this.type
- Definition Classes
- Iterable
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Iterable.seq always returns the iterable itself
- def size: Int
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).size
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.size instead
- def sum(implicit num: math.Numeric[A]): A
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).sum(num)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.sum instead
- def to[C1](factory: Factory[A, C1]): C1
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).to(factory)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(factory) instead
- def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toArray(arg0)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.toArray
- def toBuffer[B >: A]: Buffer[B]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toBuffer
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(ArrayBuffer) instead
- def toIndexedSeq: collection.IndexedSeq[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toIndexedSeq
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.toIndexedSeq instead
- final def toIterable: collection.Iterable[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toIterable
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Iterable) instead
- final def toIterable: ListSet.this.type
- returns
This collection as an
Iterable[A]
. No new collection will be built ifthis
is already anIterable[A]
.
- Definition Classes
- Iterable → IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.7) toIterable is internal and will be made protected; its name is similar to
toList
ortoSeq
, but it doesn't copy non-immutable collections
- def toIterator: Iterator[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toIterator
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator instead
- final def toIterator: Iterator[A]
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator instead of .toIterator
- def toList: List[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toList
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(List) instead
- def toMap[K, V](implicit ev: <:<[A, (K, V)]): Map[K, V]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toMap(ev)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(Map) instead
- def toSeq: Seq[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toSeq
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Seq) instead
- def toSet[B >: A]: Set[B]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toSet
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Set) instead
- def toStream: Stream[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toStream
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(LazyList) instead
- final def toStream: Stream[A]
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .to(LazyList) instead of .toStream
- final def toTraversable: collection.Traversable[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toTraversable
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Iterable) instead
- final def toTraversable: collection.Traversable[A]
Converts this list set to an unspecified Iterable.
Converts this list set to an unspecified Iterable. Will return the same collection if this instance is already Iterable.
- returns
An Iterable containing all elements of this list set.
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) toTraversable is internal and will be made protected; its name is similar to
toList
ortoSeq
, but it doesn't copy non-immutable collections
- def toVector: Vector[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).toVector
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Vector) instead
- def view(from: Int, until: Int): View[A]
A view over a slice of the elements of this collection.
A view over a slice of the elements of this collection.
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .view.slice(from, until) instead of .view(from, until)
- def withFilter(f: (A) => Boolean): Iterator[A]
- Implicit
- This member is added by an implicit conversion from ListSet[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(listSet: IterableOnceExtensionMethods[A]).withFilter(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.withFilter(...) instead
- def →[B](y: B): (ListSet[A], B)
- Implicit
- This member is added by an implicit conversion from ListSet[A] toArrowAssoc[ListSet[A]] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use
->
instead. If you still wish to display it as one character, consider using a font with programming ligatures such as Fira Code.
This is the documentation for the Scala standard library.
Package structure
The scala package contains core types like
Int
,Float
,Array
orOption
which are accessible in all Scala compilation units without explicit qualification or imports.Notable packages include:
scala.collection
and its sub-packages contain Scala's collections frameworkscala.collection.immutable
- Immutable, sequential data-structures such asVector
,List
,Range
,HashMap
orHashSet
scala.collection.mutable
- Mutable, sequential data-structures such asArrayBuffer
,StringBuilder
,HashMap
orHashSet
scala.collection.concurrent
- Mutable, concurrent data-structures such asTrieMap
scala.concurrent
- Primitives for concurrent programming such asFutures
andPromises
scala.io
- Input and output operationsscala.math
- Basic math functions and additional numeric types likeBigInt
andBigDecimal
scala.sys
- Interaction with other processes and the operating systemscala.util.matching
- Regular expressionsOther packages exist. See the complete list on the right.
Additional parts of the standard library are shipped as separate libraries. These include:
scala.reflect
- Scala's reflection API (scala-reflect.jar)scala.xml
- XML parsing, manipulation, and serialization (scala-xml.jar)scala.collection.parallel
- Parallel collections (scala-parallel-collections.jar)scala.util.parsing
- Parser combinators (scala-parser-combinators.jar)scala.swing
- A convenient wrapper around Java's GUI framework called Swing (scala-swing.jar)Automatic imports
Identifiers in the scala package and the
scala.Predef
object are always in scope by default.Some of these identifiers are type aliases provided as shortcuts to commonly used classes. For example,
List
is an alias forscala.collection.immutable.List
.Other aliases refer to classes provided by the underlying platform. For example, on the JVM,
String
is an alias forjava.lang.String
.