class OptimizingMatchTranslator extends MatchTranslator with MatchOptimizer with MatchAnalyzer with Solver
- Source
- PatternMatching.scala
- Alphabetic
- By Inheritance
- OptimizingMatchTranslator
- Solver
- CNF
- MatchAnalyzer
- MatchOptimizer
- CommonSubconditionElimination
- MatchApproximator
- TreesAndTypesDomain
- CheckableTreeAndTypeAnalysis
- PropositionalLogic
- SwitchEmission
- OptimizedCodegen
- MatchTranslator
- TreeMakerWarnings
- TreeMakers
- CodegenCore
- TypedSubstitution
- MatchMonadInterface
- AnyRef
- Any
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- All
Instance Constructors
- new OptimizingMatchTranslator(typer: (analyzer)#Typer, selectorPos: Global.Position, inAsync: Boolean)
Type Members
-
class
Substitution extends AnyRef
- Definition Classes
- TypedSubstitution
-
trait
AbsVar extends AnyRef
- Definition Classes
- PropositionalLogic
-
final
case class
And(ops: Set[Prop]) extends Prop with Product with Serializable
- Definition Classes
- PropositionalLogic
-
final
case class
AtMostOne(ops: List[Sym]) extends Prop with Product with Serializable
- Definition Classes
- PropositionalLogic
-
final
case class
Eq(p: Var, q: Const) extends Prop with Product with Serializable
- Definition Classes
- PropositionalLogic
-
final
case class
Not(a: Prop) extends Prop with Product with Serializable
- Definition Classes
- PropositionalLogic
-
final
case class
Or(ops: Set[Prop]) extends Prop with Product with Serializable
- Definition Classes
- PropositionalLogic
-
class
Prop extends AnyRef
- Definition Classes
- PropositionalLogic
-
trait
PropMap extends AnyRef
- Definition Classes
- PropositionalLogic
-
trait
PropTraverser extends AnyRef
- Definition Classes
- PropositionalLogic
-
final
case class
Solution(model: Model, unassigned: List[Sym]) extends Product with Serializable
- Definition Classes
- PropositionalLogic
-
final
class
Sym extends Prop
- Definition Classes
- PropositionalLogic
-
trait
TypeConstExtractor extends AnyRef
- Definition Classes
- PropositionalLogic
-
trait
ValueConstExtractor extends AnyRef
- Definition Classes
- PropositionalLogic
-
trait
VarExtractor extends AnyRef
- Definition Classes
- PropositionalLogic
-
case class
ConstructorExample(cls: Global.Symbol, ctorArgs: List[CounterExample]) extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
class
CounterExample extends AnyRef
- Definition Classes
- MatchAnalyzer
-
case class
ListExample(ctorArgs: List[CounterExample]) extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
case class
NegativeExample(eqTo: MatchAnalyzer.Const, nonTrivialNonEqualTo: List[MatchAnalyzer.Const]) extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
case class
TupleExample(ctorArgs: List[CounterExample]) extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
case class
TypeExample(c: MatchAnalyzer.Const) extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
case class
ValueExample(c: MatchAnalyzer.ValueConst) extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
case class
Test(prop: MatchApproximator.Prop, treeMaker: MatchApproximator.TreeMaker) extends Product with Serializable
- Definition Classes
- MatchApproximator
-
class
TreeMakersToProps extends AnyRef
- Definition Classes
- MatchApproximator
-
trait
AbsCodegen extends AnyRef
- Definition Classes
- CodegenCore
-
trait
Casegen extends AbsCodegen
- Definition Classes
- CodegenCore
-
abstract
class
CommonCodegen extends AbsCodegen
- Definition Classes
- CodegenCore
-
class
ReusedCondTreeMaker extends TreeMaker
- Definition Classes
- CommonSubconditionElimination
-
case class
ReusingCondTreeMaker(sharedPrefix: List[CommonSubconditionElimination.Test], toReused: (CommonSubconditionElimination.TreeMaker) ⇒ CommonSubconditionElimination.TreeMaker) extends TreeMaker with Product with Serializable
- Definition Classes
- CommonSubconditionElimination
-
class
RegularSwitchMaker extends SwitchMaker
- Definition Classes
- SwitchEmission
-
abstract
class
SwitchMaker extends AnyRef
- Definition Classes
- SwitchEmission
-
final
case class
BoundTree(binder: Global.Symbol, tree: Global.Tree) extends Product with Serializable
- Definition Classes
- MatchTranslator
-
abstract
class
ExtractorCall extends PatternMatching.ExtractorAlignment
- Definition Classes
- MatchTranslator
-
class
ExtractorCallProd extends ExtractorCall
- Definition Classes
- MatchTranslator
-
class
ExtractorCallRegular extends ExtractorCall
- Definition Classes
- MatchTranslator
-
final
case class
TranslationStep(makers: List[MatchTranslator.TreeMaker], subpatterns: List[BoundTree]) extends Product with Serializable
- Definition Classes
- MatchTranslator
-
case class
AlternativesTreeMaker(prevBinder: Global.Symbol, altss: List[List[TreeMaker]], pos: Global.Position) extends TreeMaker with NoNewBinders with Product with Serializable
- Definition Classes
- TreeMakers
-
case class
BodyTreeMaker(body: Global.Tree, matchPt: Global.Type) extends TreeMaker with NoNewBinders with Product with Serializable
- Definition Classes
- TreeMakers
-
sealed abstract
class
CondTreeMaker extends FunTreeMaker
- Definition Classes
- TreeMakers
-
case class
EqualityTestTreeMaker(prevBinder: Global.Symbol, patTree: Global.Tree, pos: Global.Position) extends CondTreeMaker with Product with Serializable
- Definition Classes
- TreeMakers
-
case class
ExtractorTreeMaker(extractor: Global.Tree, extraCond: Option[Global.Tree], nextBinder: Global.Symbol)(subPatBinders: List[Global.Symbol], subPatRefs: List[Global.Tree], potentiallyMutableBinders: Set[Global.Symbol], extractorReturnsBoolean: Boolean, checkedLength: Option[Int], prevBinder: Global.Symbol, ignoredSubPatBinders: Set[Global.Symbol]) extends FunTreeMaker with PreserveSubPatBinders with Product with Serializable
Make a TreeMaker that will result in an extractor call specified by
extractor
the next TreeMaker (here, we don't know which it'll be) is chained after this one by flatMap'ing a function with bindernextBinder
over our extractor's result the function's body is determined by the next TreeMaker (furthermore, the interpretation offlatMap
depends on the codegen instance we're using).Make a TreeMaker that will result in an extractor call specified by
extractor
the next TreeMaker (here, we don't know which it'll be) is chained after this one by flatMap'ing a function with bindernextBinder
over our extractor's result the function's body is determined by the next TreeMaker (furthermore, the interpretation offlatMap
depends on the codegen instance we're using).The values for the subpatterns, as computed by the extractor call in
extractor
, are stored in local variables that re-use the symbols insubPatBinders
. This makes extractor patterns more debuggable (scala/bug#5739).- Definition Classes
- TreeMakers
-
sealed abstract
class
FunTreeMaker extends TreeMaker
- Definition Classes
- TreeMakers
-
case class
GuardTreeMaker(guardTree: Global.Tree) extends TreeMaker with NoNewBinders with Product with Serializable
- Definition Classes
- TreeMakers
-
sealed
trait
NoNewBinders extends TreeMaker
- Definition Classes
- TreeMakers
-
sealed
trait
PreserveSubPatBinders extends TreeMaker
- Definition Classes
- TreeMakers
-
case class
ProductExtractorTreeMaker(prevBinder: Global.Symbol, extraCond: Option[Global.Tree])(subPatBinders: List[Global.Symbol], subPatRefs: List[Global.Tree], mutableBinders: List[Global.Symbol], binderKnownNonNull: Boolean, ignoredSubPatBinders: Set[Global.Symbol]) extends FunTreeMaker with PreserveSubPatBinders with Product with Serializable
An optimized version of ExtractorTreeMaker for Products.
An optimized version of ExtractorTreeMaker for Products. For now, this is hard-coded to case classes, and we simply extract the case class fields.
The values for the subpatterns, as specified by the case class fields at the time of extraction, are stored in local variables that re-use the symbols in
subPatBinders
. This makes extractor patterns more debuggable (scala/bug#5739) as well as avoiding mutation after the pattern has been matched (scala/bug#5158, scala/bug#6070)TODO: make this user-definable as follows When a companion object defines a method
def unapply_1(x: T): U_1
, but nodef unapply
ordef unapplySeq
, the extractor is considered to match any non-null value of type T the pattern is expected to have as many sub-patterns as there aredef unapply_I(x: T): U_I
methods, and the type of the I'th sub-pattern isU_I
. The same exception for Seq patterns applies: if the last extractor is of typeSeq[U_N]
, the pattern must have at least N arguments (exactly N if the last argument is annotated with: _*
). The arguments starting at N (and beyond) are taken from the sequence returned by apply_N, and it is checked that that sequence has enough elements to provide values for all expected sub-patterns.For a case class C, the implementation is assumed to be
def unapply_I(x: C) = x._I
, and the extractor call is inlined under that assumption.- Definition Classes
- TreeMakers
-
case class
SubstOnlyTreeMaker(prevBinder: Global.Symbol, nextBinder: Global.Symbol) extends TreeMaker with Product with Serializable
- Definition Classes
- TreeMakers
-
abstract
class
TreeMaker extends AnyRef
- Definition Classes
- TreeMakers
-
case class
TrivialTreeMaker(tree: Global.Tree) extends TreeMaker with NoNewBinders with Product with Serializable
- Definition Classes
- TreeMakers
-
case class
TypeTestTreeMaker(prevBinder: Global.Symbol, testedBinder: Global.Symbol, expectedTp: Global.Type, nextBinderTp: Global.Type)(pos: Global.Position, extractorArgTypeTest: Boolean = false) extends CondTreeMaker with Product with Serializable
implements the run-time aspects of (§8.2) (typedPattern has already done the necessary type transformations)
implements the run-time aspects of (§8.2) (typedPattern has already done the necessary type transformations)
Type patterns consist of types, type variables, and wildcards. A type pattern T is of one of the following forms:
- A reference to a class C, p.C, or T#C. This type pattern matches any non-null instance of the given class. Note that the prefix of the class, if it is given, is relevant for determining class instances. For instance, the pattern p.C matches only instances of classes C which were created with the path p as prefix. The bottom types scala.Nothing and scala.Null cannot be used as type patterns, because they would match nothing in any case.
- A singleton type p.type. This type pattern matches only the value denoted by the path p (that is, a pattern match involved a comparison of the matched value with p using method eq in class AnyRef). // TODO: the actual pattern matcher uses ==, so that's what I'm using for now // https://github.com/scala/bug/issues/4577 "pattern matcher, still disappointing us at equality time"
- A compound type pattern T1 with ... with Tn where each Ti is a type pat- tern. This type pattern matches all values that are matched by each of the type patterns Ti.
- A parameterized type pattern T[a1,...,an], where the ai are type variable patterns or wildcards _. This type pattern matches all values which match T for some arbitrary instantiation of the type variables and wildcards. The bounds or alias type of these type variable are determined as described in (§8.3).
- A parameterized type pattern scala.Array[T1], where T1 is a type pattern. // TODO This type pattern matches any non-null instance of type scala.Array[U1], where U1 is a type matched by T1.
- Definition Classes
- TreeMakers
-
type
Clause = Set[Lit]
- Definition Classes
- CNF
-
type
Cnf = Array[Clause]
Conjunctive normal form (of a Boolean formula).
Conjunctive normal form (of a Boolean formula). A formula in this form is amenable to a SAT solver (i.e., solver that decides satisfiability of a formula).
- Definition Classes
- CNF
-
type
Model = Map[Sym, Boolean]
- Definition Classes
- PropositionalLogic
-
type
Tree = Global.Tree
- Definition Classes
- TreesAndTypesDomain → PropositionalLogic
-
type
TseitinModel = Set[Lit]
- Definition Classes
- Solver
-
type
TseitinSearch = collection.immutable.List[(Array[Clause], Set[Lit])]
- Definition Classes
- Solver
-
type
Type = Global.Type
- Definition Classes
- TreesAndTypesDomain → PropositionalLogic
-
sealed abstract
class
Const extends AnyRef
- Definition Classes
- TreesAndTypesDomain
-
sealed
class
TypeConst extends Const
- Definition Classes
- TreesAndTypesDomain
-
sealed
class
ValueConst extends Const
- Definition Classes
- TreesAndTypesDomain
-
class
Var extends AbsVar
- Definition Classes
- TreesAndTypesDomain
-
class
AlreadyInCNF extends AnyRef
- Definition Classes
- CNF
-
trait
CnfBuilder extends AnyRef
- Definition Classes
- CNF
-
final
case class
Solvable(cnf: Cnf, symbolMapping: SymbolMapping) extends Product with Serializable
- Definition Classes
- CNF
-
class
SymbolMapping extends AnyRef
- Definition Classes
- CNF
-
class
TransformToCnf extends CnfBuilder
Plaisted transformation: used for conversion of a propositional formula into conjunctive normal form (CNF) (input format for SAT solver).
Plaisted transformation: used for conversion of a propositional formula into conjunctive normal form (CNF) (input format for SAT solver). A simple conversion into CNF via Shannon expansion would also be possible but it's worst-case complexity is exponential (in the number of variables) and thus even simple problems could become untractable. The Plaisted transformation results in an _equisatisfiable_ CNF-formula (it generates auxiliary variables) but runs with linear complexity. The common known Tseitin transformation uses bi-implication, whereas the Plaisted transformation uses implication only, thus the resulting CNF formula has (on average) only half of the clauses of a Tseitin transformation. The Plaisted transformation uses the polarities of sub-expressions to figure out which part of the bi-implication can be omitted. However, if all sub-expressions have positive polarity (e.g., after transformation into negation normal form) then the conversion is rather simple and the pseudo-normalization via NNF increases chances only one side of the bi-implication is needed.
- Definition Classes
- CNF
Value Members
-
object
EmptySubstitution extends Substitution
- Definition Classes
- TypedSubstitution
-
object
Substitution
- Definition Classes
- TypedSubstitution
-
object
AnalysisBudget
- Definition Classes
- PropositionalLogic
-
object
And extends Serializable
- Definition Classes
- PropositionalLogic
-
object
False extends Prop with Product with Serializable
- Definition Classes
- PropositionalLogic
-
object
Or extends Serializable
- Definition Classes
- PropositionalLogic
-
object
Sym
- Definition Classes
- PropositionalLogic
-
object
True extends Prop with Product with Serializable
- Definition Classes
- PropositionalLogic
-
object
CounterExample
- Definition Classes
- MatchAnalyzer
-
object
NoExample extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
object
WildcardExample extends CounterExample with Product with Serializable
- Definition Classes
- MatchAnalyzer
-
object
Test extends Serializable
- Definition Classes
- MatchApproximator
-
object
optimizedCodegen extends CommonCodegen
- Definition Classes
- OptimizedCodegen
-
object
ReusedCondTreeMaker
- Definition Classes
- CommonSubconditionElimination
-
object
ExtractorCall
- Definition Classes
- MatchTranslator
-
object
PatternBoundToUnderscore
- Definition Classes
- MatchTranslator
-
object
SymbolBound
- Definition Classes
- MatchTranslator
-
object
WildcardPattern
A conservative approximation of which patterns do not discern anything.
A conservative approximation of which patterns do not discern anything. They are discarded during the translation.
- Definition Classes
- MatchTranslator
-
object
IrrefutableExtractorTreeMaker
- Definition Classes
- TreeMakers
-
object
TypeTestTreeMaker extends Serializable
- Definition Classes
- TreeMakers
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
def
+(other: String): String
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to any2stringadd[OptimizingMatchTranslator] performed by method any2stringadd in scala.Predef.
- Definition Classes
- any2stringadd
-
def
->[B](y: B): (OptimizingMatchTranslator, B)
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to ArrowAssoc[OptimizingMatchTranslator] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
- Annotations
- @inline()
-
def
/\(props: Iterable[Prop]): Product with Serializable with Prop
- Definition Classes
- PropositionalLogic
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
EmptyModel: Map[Sym, Boolean]
- Definition Classes
- Solver → PropositionalLogic
-
val
EmptyTseitinModel: Set[Lit]
- Definition Classes
- Solver
-
val
NoModel: Model
- Definition Classes
- Solver → PropositionalLogic
-
val
NoTseitinModel: TseitinModel
- Definition Classes
- Solver
-
def
\/(props: Iterable[Prop]): Product with Serializable with Prop
- Definition Classes
- PropositionalLogic
-
def
analyzeCases(prevBinder: Global.Symbol, cases: List[List[TreeMaker]], pt: Type, suppression: PatternMatching.Suppression): Unit
- Definition Classes
- MatchAnalyzer → TreeMakers
-
def
approximateMatchConservative(root: Global.Symbol, cases: List[List[TreeMaker]]): List[List[Test]]
- Definition Classes
- MatchApproximator
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
budgetProp: sys.Prop[String]
- Definition Classes
- PropositionalLogic
-
final
def
caseWithoutBodyToProp(tests: List[Test]): Prop
- Attributes
- protected
- Definition Classes
- MatchApproximator
-
def
checkMatchVariablePatterns(cases: List[Global.CaseDef]): Unit
- Definition Classes
- TreeMakerWarnings
-
def
checkableType(tp: Global.Type): Global.Type
- Definition Classes
- CheckableTreeAndTypeAnalysis
-
def
clause(l: Lit*): Clause
- Definition Classes
- CNF
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
- def cnfString(f: Array[Clause]): String
-
def
codegen: AbsCodegen
- Definition Classes
- OptimizedCodegen → CodegenCore
-
def
combineCases(scrut: Global.Tree, scrutSym: Global.Symbol, casesRaw: List[List[TreeMaker]], pt: Global.Type, selectorPos: Global.Position, owner: Global.Symbol, matchFailGenOverride: Option[(Global.Tree) ⇒ Global.Tree]): Global.Tree
- Definition Classes
- TreeMakers
-
def
combineCasesNoSubstOnly(scrut: Global.Tree, scrutSym: Global.Symbol, casesNoSubstOnly: List[List[TreeMaker]], pt: Global.Type, selectorPos: Global.Position, owner: Global.Symbol, matchFailGenOverride: Option[(Global.Tree) ⇒ Global.Tree]): Global.Tree
- Definition Classes
- TreeMakers
-
def
combineExtractors(treeMakers: List[TreeMaker])(casegen: Casegen): Global.Tree
- Definition Classes
- TreeMakers
-
val
debugInfoEmitVars: Boolean
- Attributes
- protected
- Definition Classes
- TreeMakers
-
def
doCSE(prevBinder: Global.Symbol, cases: List[List[TreeMaker]], pt: Type, selectorPos: Global.Position): List[List[TreeMaker]]
a flow-sensitive, generalised, common sub-expression elimination reuse knowledge from performed tests the only sub-expressions we consider are the conditions and results of the three tests (type, type&equality, equality) when a sub-expression is shared, it is stored in a mutable variable the variable is floated up so that its scope includes all of the program that shares it we generalize sharing to implication, where b reuses a if a => b and priors(a) => priors(b) (the priors of a sub expression form the path through the decision tree)
a flow-sensitive, generalised, common sub-expression elimination reuse knowledge from performed tests the only sub-expressions we consider are the conditions and results of the three tests (type, type&equality, equality) when a sub-expression is shared, it is stored in a mutable variable the variable is floated up so that its scope includes all of the program that shares it we generalize sharing to implication, where b reuses a if a => b and priors(a) => priors(b) (the priors of a sub expression form the path through the decision tree)
- Definition Classes
- CommonSubconditionElimination
-
def
emitSwitch(scrut: Global.Tree, scrutSym: Global.Symbol, cases: List[List[TreeMaker]], pt: Global.Type, matchFailGenOverride: Option[(Global.Tree) ⇒ Global.Tree], unchecked: Boolean): Option[Global.Tree]
- Definition Classes
- SwitchEmission → TreeMakers
-
def
emitTypeSwitch(bindersAndCases: List[(Global.Symbol, List[TreeMaker])], pt: Global.Type): Option[List[Global.CaseDef]]
- Definition Classes
- SwitchEmission → TreeMakers
-
def
ensuring(cond: (OptimizingMatchTranslator) ⇒ Boolean, msg: ⇒ Any): OptimizingMatchTranslator
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to Ensuring[OptimizingMatchTranslator] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
def
ensuring(cond: (OptimizingMatchTranslator) ⇒ Boolean): OptimizingMatchTranslator
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to Ensuring[OptimizingMatchTranslator] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
def
ensuring(cond: Boolean, msg: ⇒ Any): OptimizingMatchTranslator
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to Ensuring[OptimizingMatchTranslator] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
def
ensuring(cond: Boolean): OptimizingMatchTranslator
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to Ensuring[OptimizingMatchTranslator] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
-
def
enumerateSubtypes(tp: Global.Type, grouped: Boolean): List[List[Global.Type]]
- Definition Classes
- CheckableTreeAndTypeAnalysis
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
eqFreePropToSolvable(p: Prop): Solvable
- Definition Classes
- CNF → PropositionalLogic
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
exhaustive(prevBinder: Global.Symbol, cases: List[List[TreeMaker]], pt: Type): List[String]
- Definition Classes
- MatchAnalyzer
-
def
expandModel(solution: Solution): List[Map[Var, (Seq[Const], Seq[Const])]]
The models we get from the DPLL solver need to be mapped back to counter examples.
The models we get from the DPLL solver need to be mapped back to counter examples. However there's no precalculated mapping model -> counter example. Even worse, not every valid model corresponds to a valid counter example. The reason is that restricting the valid models further would for example require a quadratic number of additional clauses. So to keep the optimistic case fast (i.e., all cases are covered in a pattern match), the infeasible counter examples are filtered later.
The DPLL procedure keeps the literals that do not contribute to the solution unassigned, e.g., for
(a \/ b)
only {a = true} or {b = true} is required and the other variable can have any value.This function does a smart expansion of the model and avoids models that have conflicting mappings.
For example for in case of the given set of symbols (taken from
t7020.scala
): "V2=2#16" "V2=6#19" "V2=5#18" "V2=4#17" "V2=7#20"One possibility would be to group the symbols by domain but this would only work for equality tests and would not be compatible with type tests. Another observation leads to a much simpler algorithm: Only one of these symbols can be set to true, since
V2
can at most be equal to one of {2,6,5,4,7}.- Definition Classes
- MatchAnalyzer
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
def
findAllModelsFor(solvable: Solvable, owner: Global.Symbol): List[Solution]
- Definition Classes
- Solver → PropositionalLogic
-
def
findModelFor(solvable: Solvable): Model
- Definition Classes
- Solver → PropositionalLogic
-
def
findTseitinModelFor(clauses: Array[Clause]): TseitinModel
- Definition Classes
- Solver
-
def
fixerUpper(origOwner: Global.Symbol, pos: Global.Position): Global.Traverser
- Attributes
- protected
- Definition Classes
- TreeMakers
-
def
freshName(prefix: String): Global.TermName
- Definition Classes
- CodegenCore
-
def
freshSym(pos: Global.Position, tp: Global.Type = NoType, prefix: String = "x"): Global.TermSymbol
- Definition Classes
- CodegenCore
-
def
gatherSymbols(p: Prop): Set[Sym]
- Definition Classes
- PropositionalLogic
-
def
gatherVariables(p: Prop): Set[Var]
- Definition Classes
- PropositionalLogic
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
val
inAsync: Boolean
- Definition Classes
- OptimizingMatchTranslator → SwitchEmission
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
val
matchOwner: Global.Symbol
- Definition Classes
- MatchMonadInterface
-
def
modelToCounterExample(scrutVar: Var)(varAssignment: Map[Var, (Seq[Const], Seq[Const])]): Option[CounterExample]
- Definition Classes
- MatchAnalyzer
-
def
modelToVarAssignment(model: Model): Map[Var, (Seq[Const], Seq[Const])]
- Definition Classes
- MatchAnalyzer
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
newSynthCaseLabel(name: String): Global.MethodSymbol
- Definition Classes
- CodegenCore
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
optimizeCases(prevBinder: Global.Symbol, cases: List[List[TreeMaker]], pt: Type, selectorPos: Global.Position): (List[List[TreeMaker]], List[Tree])
- Definition Classes
- MatchOptimizer → TreeMakers
-
def
prepareNewAnalysis(): Unit
- Definition Classes
- TreesAndTypesDomain → PropositionalLogic
-
def
propToSolvable(p: Prop): Solvable
- Definition Classes
- PropositionalLogic
-
def
propagateSubstitution(treeMakers: List[TreeMaker], initial: Substitution): List[TreeMaker]
- Definition Classes
- TreeMakers
-
def
pureType(tp: Global.Type): Global.Type
- Definition Classes
- MatchMonadInterface
-
def
removeSubstOnly(makers: List[TreeMaker]): collection.immutable.List[TreeMaker]
- Definition Classes
- TreeMakers
-
def
removeVarEq(props: List[Prop], modelNull: Boolean = false): (Prop, List[Prop])
- Definition Classes
- PropositionalLogic
-
def
reportMissingCases(pos: Global.Position, counterExamples: List[String]): Unit
- Definition Classes
- MatchMonadInterface
-
def
reportUnreachable(pos: Global.Position): Unit
- Definition Classes
- MatchMonadInterface
-
def
reportWarning(message: String): Unit
- Definition Classes
- MatchAnalyzer → PropositionalLogic
-
val
selectorPos: Global.Position
- Definition Classes
- OptimizingMatchTranslator → MatchTranslator
-
def
showTreeMakers(cases: List[List[TreeMaker]]): Unit
- Definition Classes
- MatchApproximator
-
def
simplify(f: Prop): Prop
Simplifies propositional formula according to the following rules: - eliminate double negation (avoids unnecessary Tseitin variables) - flatten trees of same connectives (avoids unnecessary Tseitin variables) - removes constants and connectives that are in fact constant because of their operands - eliminates duplicate operands - convert formula into NNF: all sub-expressions have a positive polarity which makes them amenable for the subsequent Plaisted transformation and increases chances to figure out that the formula is already in CNF
Simplifies propositional formula according to the following rules: - eliminate double negation (avoids unnecessary Tseitin variables) - flatten trees of same connectives (avoids unnecessary Tseitin variables) - removes constants and connectives that are in fact constant because of their operands - eliminates duplicate operands - convert formula into NNF: all sub-expressions have a positive polarity which makes them amenable for the subsequent Plaisted transformation and increases chances to figure out that the formula is already in CNF
Complexity: DFS over formula tree
See http://www.decision-procedures.org/slides/propositional_logic-2x3.pdf
- Definition Classes
- PropositionalLogic
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
translateBody(body: Global.Tree, matchPt: Global.Type): TreeMaker
- Definition Classes
- MatchTranslator
-
def
translateCase(scrutSym: Global.Symbol, pt: Global.Type)(caseDef: Global.CaseDef): collection.immutable.List[TreeMaker]
The translation of
pat if guard => body
has two aspects: 1) the substitution due to the variables bound by patterns 2) the combination of the extractor calls usingflatMap
.The translation of
pat if guard => body
has two aspects: 1) the substitution due to the variables bound by patterns 2) the combination of the extractor calls usingflatMap
.2) is easy -- it looks like:
translatePattern_1.flatMap(translatePattern_2....flatMap(translatePattern_N.flatMap(translateGuard.flatMap((x_i) => success(Xbody(x_i)))))...)
this must be right-leaning tree, as can be seen intuitively by considering the scope of bound variables: variables bound by pat_1 must be visible from the function inside the left-most flatMap right up to Xbody all the way on the right 1) is tricky because translatePattern_i determines the shape of translatePattern_i+1: zoom in ontranslatePattern_1.flatMap(translatePattern_2)
for example -- it actually looks more like:translatePattern_1(x_scrut).flatMap((x_1) => {y_i -> x_1._i}translatePattern_2)
x_1
references the result (inside the monad) of the extractor corresponding topat_1
, this result holds the values for the constructor arguments, which translatePattern_1 has extracted from the object pointed to byx_scrut
. They_i
are the symbols bound bypat_1
(in order) in the scope of the remainder of the pattern, and they must thus be replaced by:- (for 1-ary unapply) x_1
- (for n-ary unapply, n > 1) selection of the i'th tuple component of
x_1
- (for unapplySeq) x_1.apply(i)
in the treemakers,
Thus, the result type of
translatePattern_i
's extractor must conform toM[(T_1,..., T_n)]
.Operationally, phase 1) is a foldLeft, since we must consider the depth-first-flattening of the transformed patterns from left to right. For every pattern ast node, it produces a transformed ast and a function that will take care of binding and substitution of the next ast (to the right).
- Definition Classes
- MatchTranslator
-
def
translateGuard(guard: Global.Tree): List[TreeMaker]
- Definition Classes
- MatchTranslator
-
def
translateMatch(match_: Global.Match): Global.Tree
Implement a pattern match by turning its cases (including the implicit failure case) into the corresponding (monadic) extractors, and combining them with the
orElse
combinator.Implement a pattern match by turning its cases (including the implicit failure case) into the corresponding (monadic) extractors, and combining them with the
orElse
combinator.For
scrutinee match { case1 ... caseN }
, the resulting tree has the shaperunOrElse(scrutinee)(x => translateCase1(x).orElse(translateCase2(x)).....orElse(zero))
NOTE: the resulting tree is not type checked, nor are nested pattern matches transformed thus, you must typecheck the result (and that will in turn translate nested matches) this could probably optimized... (but note that the matchStrategy must be solved for each nested patternmatch)
- Definition Classes
- MatchTranslator
-
def
translatePattern(bound: BoundTree): List[TreeMaker]
- Definition Classes
- MatchTranslator
-
def
translateTry(caseDefs: List[Global.CaseDef], pt: Global.Type, pos: Global.Position): List[Global.CaseDef]
- Definition Classes
- MatchTranslator
-
val
typer: (analyzer)#Typer
- Definition Classes
- OptimizingMatchTranslator → CheckableTreeAndTypeAnalysis → MatchMonadInterface
-
def
uncheckableType(tp: Global.Type): Boolean
- Definition Classes
- CheckableTreeAndTypeAnalysis
-
def
uncheckedWarning(pos: Global.Position, msg: String, site: Global.Symbol): Unit
- Definition Classes
- MatchAnalyzer → PropositionalLogic
-
def
unreachableCase(prevBinder: Global.Symbol, cases: List[List[TreeMaker]], pt: Type): Option[Int]
- Definition Classes
- MatchAnalyzer
-
def
varAssignmentString(varAssignment: Map[Var, (Seq[Const], Seq[Const])]): String
- Definition Classes
- MatchAnalyzer
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
def
warn(pos: Global.Position, ex: Logic.PropositionalLogic.AnalysisBudget.Exception, kind: String, site: Global.Symbol): Unit
- Definition Classes
- MatchAnalyzer
-
def
→[B](y: B): (OptimizingMatchTranslator, B)
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to ArrowAssoc[OptimizingMatchTranslator] performed by method ArrowAssoc in scala.Predef.
- Definition Classes
- ArrowAssoc
-
object
Const
- Definition Classes
- TreesAndTypesDomain
-
object
NullConst extends Const with Product with Serializable
- Definition Classes
- TreesAndTypesDomain → PropositionalLogic
-
object
TypeConst extends TypeConstExtractor
- Definition Classes
- TreesAndTypesDomain → PropositionalLogic
-
object
ValueConst extends ValueConstExtractor
- Definition Classes
- TreesAndTypesDomain → PropositionalLogic
-
object
Var extends VarExtractor
- Definition Classes
- TreesAndTypesDomain → PropositionalLogic
Deprecated Value Members
-
def
formatted(fmtstr: String): String
- Implicit
- This member is added by an implicit conversion from OptimizingMatchTranslator to StringFormat[OptimizingMatchTranslator] performed by method StringFormat in scala.Predef.
- Definition Classes
- StringFormat
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.12.16) Use
formatString.format(value)
instead ofvalue.formatted(formatString)
, or use thef""
string interpolator. In Java 15 and later,formatted
resolves to the new method in String which has reversed parameters.
The Scala compiler and reflection APIs.