class Stack[A] extends ArrayDeque[A] with IndexedSeqOps[A, Stack, Stack[A]] with StrictOptimizedSeqOps[A, Stack, Stack[A]] with IterableFactoryDefaults[A, Stack] with ArrayDequeOps[A, Stack, Stack[A]] with Cloneable[Stack[A]] with DefaultSerializable
A stack implements a data structure which allows to store and retrieve objects in a last-in-first-out (LIFO) fashion.
Note that operations which consume and produce iterables preserve order, rather than reversing it (as would be expected from building a new stack by pushing an element at a time).
- A
type of the elements contained in this stack.
- Annotations
- @migration
- Migration
(Changed in version 2.13.0) Stack is now based on an ArrayDeque instead of a linked list
- Source
- Stack.scala
- Alphabetic
- By Inheritance
- Stack
- ArrayDeque
- DefaultSerializable
- Serializable
- ArrayDequeOps
- StrictOptimizedSeqOps
- StrictOptimizedIterableOps
- IndexedBuffer
- IndexedSeq
- IndexedSeqOps
- IndexedSeq
- IndexedSeqOps
- AbstractBuffer
- Buffer
- Shrinkable
- Growable
- Clearable
- AbstractSeq
- Seq
- SeqOps
- Cloneable
- Cloneable
- Iterable
- AbstractSeq
- Seq
- Equals
- SeqOps
- PartialFunction
- Function1
- AbstractIterable
- Iterable
- IterableFactoryDefaults
- IterableOps
- IterableOnceOps
- IterableOnce
- AnyRef
- Any
- by UnliftOps
- by iterableOnceExtensionMethods
- by any2stringadd
- by StringFormat
- by Ensuring
- by ArrowAssoc
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Value Members
- final def !=(arg0: Any): Boolean
Test two objects for inequality.
Test two objects for inequality.
- returns
true
if !(this == that), false otherwise.
- Definition Classes
- AnyRef → Any
- final def ##: Int
Equivalent to
x.hashCode
except for boxed numeric types andnull
.Equivalent to
x.hashCode
except for boxed numeric types andnull
. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. Fornull
returns a hashcode wherenull.hashCode
throws aNullPointerException
.- returns
a hash value consistent with ==
- Definition Classes
- AnyRef → Any
- def +(other: String): String
- Implicit
- This member is added by an implicit conversion from Stack[A] toany2stringadd[Stack[A]] performed by method any2stringadd in scala.Predef.
- Definition Classes
- any2stringadd
- final def ++[B >: A](suffix: IterableOnce[B]): Stack[B]
Alias for
concat
Alias for
concat
- Definition Classes
- IterableOps
- Annotations
- @inline()
- final def ++:[B >: A](prefix: IterableOnce[B]): Stack[B]
Alias for
prependedAll
.Alias for
prependedAll
.- Definition Classes
- SeqOps → IterableOps
- Annotations
- @inline()
- final def ++=(elems: IterableOnce[A]): Stack.this.type
Alias for
addAll
- final def ++=:(elems: IterableOnce[A]): Stack.this.type
Alias for
prependAll
- final def +:[B >: A](elem: B): Stack[B]
Alias for
prepended
. - final def +=(elem: A): Stack.this.type
Alias for
addOne
- final def +=:(elem: A): Stack.this.type
Alias for
prepend
- final def --=(xs: IterableOnce[A]): Stack.this.type
Alias for
subtractAll
Alias for
subtractAll
- Definition Classes
- Shrinkable
- Annotations
- @inline()
- final def -=(elem: A): Stack.this.type
Alias for
subtractOne
Alias for
subtractOne
- Definition Classes
- Shrinkable
- Annotations
- @inline()
- def ->[B](y: B): (Stack[A], B)
- Implicit
- This member is added by an implicit conversion from Stack[A] toArrowAssoc[Stack[A]] performed by method ArrowAssoc in scala.Predef.This conversion will take place only if A is a subclass of Option[Nothing] (A <: Option[Nothing]).
- Definition Classes
- ArrowAssoc
- Annotations
- @inline()
- final def :+[B >: A](elem: B): Stack[B]
Alias for
appended
. - final def :++[B >: A](suffix: IterableOnce[B]): Stack[B]
Alias for
appendedAll
. - final def ==(arg0: Any): Boolean
The expression
x == that
is equivalent toif (x eq null) that eq null else x.equals(that)
.The expression
x == that
is equivalent toif (x eq null) that eq null else x.equals(that)
.- returns
true
if the receiver object is equivalent to the argument;false
otherwise.
- Definition Classes
- AnyRef → Any
- def addAll(elems: IterableOnce[A]): Stack.this.type
Adds all elements produced by an IterableOnce to this stack.
Adds all elements produced by an IterableOnce to this stack.
- elems
the IterableOnce producing the elements to add.
- returns
the stack itself.
- Definition Classes
- ArrayDeque → Growable
- def addOne(elem: A): Stack.this.type
Adds a single element to this stack.
Adds a single element to this stack.
- elem
the element to add.
- returns
the stack itself
- Definition Classes
- ArrayDeque → Growable
- final def addString(b: StringBuilder): b.type
Appends all elements of this stack to a string builder.
Appends all elements of this stack to a string builder. The written text consists of the string representations (w.r.t. the method
toString
) of all elements of this stack without any separator string.Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> val h = a.addString(b) h: StringBuilder = 1234
- b
the string builder to which elements are appended.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- final def addString(b: StringBuilder, sep: String): b.type
Appends all elements of this stack to a string builder using a separator string.
Appends all elements of this stack to a string builder using a separator string. The written text consists of the string representations (w.r.t. the method
toString
) of all elements of this stack, separated by the stringsep
.Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b, ", ") res0: StringBuilder = 1, 2, 3, 4
- b
the string builder to which elements are appended.
- sep
the separator string.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- def addString(b: StringBuilder, start: String, sep: String, end: String): b.type
Appends all elements of this stack to a string builder using start, end, and separator strings.
Appends all elements of this stack to a string builder using start, end, and separator strings. The written text begins with the string
start
and ends with the stringend
. Inside, the string representations (w.r.t. the methodtoString
) of all elements of this stack are separated by the stringsep
.Example:
scala> val a = List(1,2,3,4) a: List[Int] = List(1, 2, 3, 4) scala> val b = new StringBuilder() b: StringBuilder = scala> a.addString(b , "List(" , ", " , ")") res5: StringBuilder = List(1, 2, 3, 4)
- b
the string builder to which elements are appended.
- start
the starting string.
- sep
the separator string.
- end
the ending string.
- returns
the string builder
b
to which elements were appended.
- Definition Classes
- IterableOnceOps
- def andThen[C](k: PartialFunction[A, C]): PartialFunction[Int, C]
Composes this partial function with another partial function that gets applied to results of this partial function.
Composes this partial function with another partial function that gets applied to results of this partial function.
Note that calling isDefinedAt on the resulting partial function may apply the first partial function and execute its side effect. For efficiency, it is recommended to call applyOrElse instead of isDefinedAt or apply.
- C
the result type of the transformation function.
- k
the transformation function
- returns
a partial function with the domain of this partial function narrowed by other partial function, which maps arguments
x
tok(this(x))
.
- Definition Classes
- PartialFunction
- def andThen[C](k: (A) => C): PartialFunction[Int, C]
Composes this partial function with a transformation function that gets applied to results of this partial function.
Composes this partial function with a transformation function that gets applied to results of this partial function.
If the runtime type of the function is a
PartialFunction
then the otherandThen
method is used (note its cautions).- C
the result type of the transformation function.
- k
the transformation function
- returns
a partial function with the domain of this partial function, possibly narrowed by the specified function, which maps arguments
x
tok(this(x))
.
- Definition Classes
- PartialFunction → Function1
- final def append(elem: A): Stack.this.type
Appends the given elements to this buffer.
- final def appendAll(elems: IterableOnce[A]): Stack.this.type
Appends the elements contained in a iterable object to this buffer.
- def appended[B >: A](elem: B): Stack[B]
A copy of this stack with an element appended.
A copy of this stack with an element appended.
Example:
scala> val a = List(1) a: List[Int] = List(1) scala> val b = a :+ 2 b: List[Int] = List(1, 2) scala> println(a) List(1)
- B
the element type of the returned stack.
- elem
the appended element
- returns
a new stack consisting of all elements of this stack followed by
value
.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def appendedAll[B >: A](suffix: IterableOnce[B]): Stack[B]
Returns a new stack containing the elements from the left hand operand followed by the elements from the right hand operand.
Returns a new stack containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the stack is the most specific superclass encompassing the element types of the two operands.
- B
the element type of the returned collection.
- suffix
the iterable to append.
- returns
a new collection of type
CC[B]
which contains all elements of this stack followed by all elements ofsuffix
.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def apply(idx: Int): A
Gets the element at the specified index.
Gets the element at the specified index. This operation is provided for convenience in
Seq
. It should not be assumed to be efficient unless you have anIndexedSeq
.- Definition Classes
- ArrayDeque → SeqOps → Function1
- def applyOrElse[A1 <: Int, B1 >: A](x: A1, default: (A1) => B1): B1
Applies this partial function to the given argument when it is contained in the function domain.
Applies this partial function to the given argument when it is contained in the function domain. Applies fallback function where this partial function is not defined.
Note that expression
pf.applyOrElse(x, default)
is equivalent toif(pf isDefinedAt x) pf(x) else default(x)
except that
applyOrElse
method can be implemented more efficiently. For all partial function literals the compiler generates anapplyOrElse
implementation which avoids double evaluation of pattern matchers and guards. This makesapplyOrElse
the basis for the efficient implementation for many operations and scenarios, such as:- combining partial functions into
orElse
/andThen
chains does not lead to excessiveapply
/isDefinedAt
evaluation lift
andunlift
do not evaluate source functions twice on each invocationrunWith
allows efficient imperative-style combining of partial functions with conditionally applied actions
For non-literal partial function classes with nontrivial
isDefinedAt
method it is recommended to overrideapplyOrElse
with custom implementation that avoids doubleisDefinedAt
evaluation. This may result in better performance and more predictable behavior w.r.t. side effects.- x
the function argument
- default
the fallback function
- returns
the result of this function or fallback function application.
- Definition Classes
- PartialFunction
- combining partial functions into
- var array: Array[AnyRef]
- Attributes
- protected
- Definition Classes
- ArrayDeque → ArrayDequeOps
- final def asInstanceOf[T0]: T0
Forces the compiler to treat the receiver object as having type
T0
, even though doing so may violate type safety.Forces the compiler to treat the receiver object as having type
T0
, even though doing so may violate type safety.This method is useful when you believe you have type information the compiler doesn't, and it also isn't possible to check the type at runtime. In such situations, skipping type safety is the only option.
It is platform dependent whether
asInstanceOf
has any effect at runtime. It might do a runtime type test on the erasure ofT0
, insert a conversion (such as boxing/unboxing), fill in a default value, or do nothing at all.In particular,
asInstanceOf
is not a type test. It does **not** mean:this match { case x: T0 => x case _ => throw ClassCastException("...")
Use pattern matching or isInstanceOf for type testing instead.
Situations where
asInstanceOf
is useful:- when flow analysis fails to deduce
T0
automatically - when down-casting a type parameter or an abstract type member (which cannot be checked at runtime due to type erasure) If there is any doubt and you are able to type test instead, you should do so.
Be careful of using
asInstanceOf
whenT0
is a primitive type. WhenT0
is primitive,asInstanceOf
may insert a conversion instead of a type test. If your intent is to convert, use atoT
method (x.toChar
,x.toByte
, etc.).- returns
the receiver object.
- Definition Classes
- Any
- Exceptions thrown
ClassCastException
if the receiver is not an instance of the erasure ofT0
, if that can be checked on this platform
- when flow analysis fails to deduce
- def canEqual(that: Any): Boolean
Checks whether this instance can possibly equal
that
.Checks whether this instance can possibly equal
that
.A method that should be called from every well-designed equals method that is open to be overridden in a subclass. See Programming in Scala, Chapter 28 for discussion and design.
- that
the value being probed for possible equality
- returns
true if this instance can possibly equal
that
, otherwise false
- def className: String
Defines the prefix of this object's
toString
representation.Defines the prefix of this object's
toString
representation.It is recommended to return the name of the concrete collection type, but not implementation subclasses. For example, for
ListMap
this method should return"ListMap"
, not"Map"
(the supertype) or"Node"
(an implementation subclass).The default implementation returns "Iterable". It is overridden for the basic collection kinds "Seq", "IndexedSeq", "LinearSeq", "Buffer", "Set", "Map", "SortedSet", "SortedMap" and "View".
- returns
a string representation which starts the result of
toString
applied to this stack. By default the string prefix is the simple name of the collection class stack.
- Attributes
- protected[this]
- Definition Classes
- Iterable
- def clear(): Unit
Note: This does not actually resize the internal representation.
Note: This does not actually resize the internal representation. See clearAndShrink if you want to also resize internally
- Definition Classes
- ArrayDeque → Clearable
- def clearAndShrink(size: Int = ArrayDeque.DefaultInitialSize): Stack.this.type
Clears this buffer and shrinks to @param size
Clears this buffer and shrinks to @param size
- Definition Classes
- ArrayDeque
- final def clone(): Stack[A]
Create a copy of the receiver object.
Create a copy of the receiver object.
The default implementation of the
clone
method is platform dependent.- returns
a copy of the receiver object.
- Definition Classes
- ArrayDequeOps → AnyRef
- Note
not specified by SLS as a member of AnyRef
- final def coll: Stack.this.type
- returns
This collection as a
C
.
- Attributes
- protected
- Definition Classes
- Iterable → IterableOps
- def collect[B](pf: PartialFunction[A, B]): Stack[B]
Builds a new stack by applying a partial function to all elements of this stack on which the function is defined.
Builds a new stack by applying a partial function to all elements of this stack on which the function is defined.
- B
the element type of the returned stack.
- pf
the partial function which filters and maps the stack.
- returns
a new stack resulting from applying the given partial function
pf
to each element on which it is defined and collecting the results. The order of the elements is preserved.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def collectFirst[B](pf: PartialFunction[A, B]): Option[B]
Finds the first element of the stack for which the given partial function is defined, and applies the partial function to it.
Finds the first element of the stack for which the given partial function is defined, and applies the partial function to it.
- pf
the partial function
- returns
an option value containing pf applied to the first value for which it is defined, or
None
if none exists.
- Definition Classes
- IterableOnceOps
Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)
Example: - def combinations(n: Int): Iterator[Stack[A]]
Iterates over combinations of elements.
Iterates over combinations of elements.
A combination of length
n
is a sequence ofn
elements selected in order of their first index in this sequence.For example,
"xyx"
has two combinations of length 2. Thex
is selected first:"xx"
,"xy"
. The sequence"yx"
is not returned as a combination because it is subsumed by"xy"
.If there is more than one way to generate the same combination, only one will be returned.
For example, the result
"xy"
arbitrarily selected one of thex
elements.As a further illustration,
"xyxx"
has three different ways to generate"xy"
because there are three elementsx
to choose from. Moreover, there are three unordered pairs"xx"
but only one is returned.It is not specified which of these equal combinations is returned. It is an implementation detail that should not be relied on. For example, the combination
"xx"
does not necessarily contain the firstx
in this sequence. This behavior is observable if the elements compare equal but are not identical.As a consequence,
"xyx".combinations(3).next()
is"xxy"
: the combination does not reflect the order of the original sequence, but the order in which elements were selected, by "first index"; the order of eachx
element is also arbitrary.Note: Even when applied to a view or a lazy collection it will always force the elements.
- returns
An Iterator which traverses the n-element combinations of this stack.
- Definition Classes
- SeqOps
Seq('a', 'b', 'b', 'b', 'c').combinations(2).foreach(println) // List(a, b) // List(a, c) // List(b, b) // List(b, c) Seq('b', 'a', 'b').combinations(2).foreach(println) // List(b, b) // List(b, a)
Example: - def compose[R](k: PartialFunction[R, Int]): PartialFunction[R, A]
Composes another partial function
k
with this partial function so that this partial function gets applied to results ofk
.Composes another partial function
k
with this partial function so that this partial function gets applied to results ofk
.Note that calling isDefinedAt on the resulting partial function may apply the first partial function and execute its side effect. For efficiency, it is recommended to call applyOrElse instead of isDefinedAt or apply.
- R
the parameter type of the transformation function.
- k
the transformation function
- returns
a partial function with the domain of other partial function narrowed by this partial function, which maps arguments
x
tothis(k(x))
.
- Definition Classes
- PartialFunction
- def compose[A](g: (A) => Int): (A) => A
Composes two instances of
Function1
in a newFunction1
, with this function applied last.Composes two instances of
Function1
in a newFunction1
, with this function applied last.- A
the type to which function
g
can be applied- g
a function A => T1
- returns
a new function
f
such thatf(x) == apply(g(x))
- Definition Classes
- Function1
- Annotations
- @unspecialized()
- final def concat[B >: A](suffix: IterableOnce[B]): Stack[B]
Returns a new stack containing the elements from the left hand operand followed by the elements from the right hand operand.
Returns a new stack containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the stack is the most specific superclass encompassing the element types of the two operands.
- B
the element type of the returned collection.
- suffix
the iterable to append.
- returns
a new stack which contains all elements of this stack followed by all elements of
suffix
.
- Definition Classes
- SeqOps → IterableOps
- Annotations
- @inline()
- def contains[A1 >: A](elem: A1): Boolean
Tests whether this stack contains a given value as an element.
Tests whether this stack contains a given value as an element.
- elem
the element to test.
- returns
true
if this stack has an element that is equal (as determined by==
) toelem
,false
otherwise.
- Definition Classes
- SeqOps
- def containsSlice[B >: A](that: collection.Seq[B]): Boolean
Tests whether this stack contains a given sequence as a slice.
Tests whether this stack contains a given sequence as a slice.
- that
the sequence to test
- returns
true
if this stack contains a slice with the same elements asthat
, otherwisefalse
.
- Definition Classes
- SeqOps
- def copySliceToArray(srcStart: Int, dest: Array[_], destStart: Int, maxItems: Int): dest.type
This is a more general version of copyToArray - this also accepts a srcStart unlike copyToArray This copies maxItems elements from this collections srcStart to dest's destStart If we reach the end of either collections before we could copy maxItems, we simply stop copying
This is a more general version of copyToArray - this also accepts a srcStart unlike copyToArray This copies maxItems elements from this collections srcStart to dest's destStart If we reach the end of either collections before we could copy maxItems, we simply stop copying
- Definition Classes
- ArrayDequeOps
- def copyToArray[B >: A](dest: Array[B], destStart: Int, len: Int): Int
Copy elements to an array, returning the number of elements written.
Copy elements to an array, returning the number of elements written.
Fills the given array
xs
starting at indexstart
with at mostlen
elements of this stack.Copying will stop once either all the elements of this stack have been copied, or the end of the array is reached, or
len
elements have been copied.- B
the type of the elements of the array.
- len
the maximal number of elements to copy.
- returns
the number of elements written to the array
- Definition Classes
- ArrayDeque → IterableOnceOps
- Note
Reuse: After calling this method, one should discard the iterator it was called on. Using it is undefined and subject to change.
- def copyToArray[B >: A](xs: Array[B], start: Int): Int
Copies elements to an array, returning the number of elements written.
Copies elements to an array, returning the number of elements written.
Fills the given array
xs
starting at indexstart
with values of this stack.Copying will stop once either all the elements of this stack have been copied, or the end of the array is reached.
- B
the type of the elements of the array.
- xs
the array to fill.
- start
the starting index of xs.
- returns
the number of elements written to the array
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- Note
Reuse: After calling this method, one should discard the iterator it was called on. Using it is undefined and subject to change.
- def copyToArray[B >: A](xs: Array[B]): Int
Copies elements to an array, returning the number of elements written.
Copies elements to an array, returning the number of elements written.
Fills the given array
xs
starting at indexstart
with values of this stack.Copying will stop once either all the elements of this stack have been copied, or the end of the array is reached.
- B
the type of the elements of the array.
- xs
the array to fill.
- returns
the number of elements written to the array
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- Note
Reuse: After calling this method, one should discard the iterator it was called on. Using it is undefined and subject to change.
- def corresponds[B](that: collection.Seq[B])(p: (A, B) => Boolean): Boolean
Tests whether every element of this stack relates to the corresponding element of another sequence by satisfying a test predicate.
Tests whether every element of this stack relates to the corresponding element of another sequence by satisfying a test predicate.
- B
the type of the elements of
that
- that
the other sequence
- p
the test predicate, which relates elements from both sequences
- returns
true
if both sequences have the same length andp(x, y)
istrue
for all corresponding elementsx
of this stack andy
ofthat
, otherwisefalse
.
- Definition Classes
- SeqOps
- def corresponds[B](that: IterableOnce[B])(p: (A, B) => Boolean): Boolean
Tests whether every element of this collection's iterator relates to the corresponding element of another collection by satisfying a test predicate.
Tests whether every element of this collection's iterator relates to the corresponding element of another collection by satisfying a test predicate.
- B
the type of the elements of
that
- that
the other collection
- p
the test predicate, which relates elements from both collections
- returns
true
if both collections have the same length andp(x, y)
istrue
for all corresponding elementsx
of this iterator andy
ofthat
, otherwisefalse
- Definition Classes
- IterableOnceOps
- def count(p: (A) => Boolean): Int
Counts the number of elements in the stack which satisfy a predicate.
Counts the number of elements in the stack which satisfy a predicate.
- p
the predicate used to test elements.
- returns
the number of elements satisfying the predicate
p
.
- Definition Classes
- IterableOnceOps
- def diff[B >: A](that: collection.Seq[B]): Stack[A]
Computes the multiset difference between this stack and another sequence.
Computes the multiset difference between this stack and another sequence.
- that
the sequence of elements to remove
- returns
a new stack which contains all elements of this stack except some of occurrences of elements that also appear in
that
. If an element valuex
appears n times inthat
, then the first n occurrences ofx
will not form part of the result, but any following occurrences will.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def distinct: Stack[A]
Selects all the elements of this stack ignoring the duplicates.
Selects all the elements of this stack ignoring the duplicates.
- returns
a new stack consisting of all the elements of this stack without duplicates.
- Definition Classes
- SeqOps
- def distinctBy[B](f: (A) => B): Stack[A]
Selects all the elements of this stack ignoring the duplicates as determined by
==
after applying the transforming functionf
.Selects all the elements of this stack ignoring the duplicates as determined by
==
after applying the transforming functionf
.- B
the type of the elements after being transformed by
f
- f
The transforming function whose result is used to determine the uniqueness of each element
- returns
a new stack consisting of all the elements of this stack without duplicates.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def drop(n: Int): Stack[A]
Selects all elements except the first
n
ones.Selects all elements except the first
n
ones.- n
the number of elements to drop from this stack.
- returns
a stack consisting of all elements of this stack except the first
n
ones, or else the empty stack, if this stack has less thann
elements. Ifn
is negative, don't drop any elements.
- Definition Classes
- IndexedSeqOps → IterableOps → IterableOnceOps
- def dropInPlace(n: Int): Stack.this.type
Removes the first
n
elements from this stack.Removes the first
n
elements from this stack.- n
the number of elements to remove
- returns
this stack
- Definition Classes
- Buffer
- def dropRight(n: Int): Stack[A]
The rest of the collection without its
n
last elements.The rest of the collection without its
n
last elements. For linear, immutable collections this should avoid making a copy.Note: Even when applied to a view or a lazy collection it will always force the elements.
- n
the number of elements to drop from this stack.
- returns
a stack consisting of all elements of this stack except the last
n
ones, or else the empty stack, if this stack has less thann
elements. Ifn
is negative, don't drop any elements.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def dropRightInPlace(n: Int): Stack.this.type
Removes the last
n
elements from this stack.Removes the last
n
elements from this stack.- n
the number of elements to remove
- returns
this stack
- Definition Classes
- Buffer
- def dropWhile(p: (A) => Boolean): Stack[A]
Selects all elements except the longest prefix that satisfies a predicate.
Selects all elements except the longest prefix that satisfies a predicate.
The matching prefix starts with the first element of this stack, and the element following the prefix is the first element that does not satisfy the predicate. The matching prefix may be empty, so that this method returns the entire stack.
Example:
scala> List(1, 2, 3, 100, 4).dropWhile(n => n < 10) val res0: List[Int] = List(100, 4) scala> List(1, 2, 3, 100, 4).dropWhile(n => n == 0) val res1: List[Int] = List(1, 2, 3, 100, 4)
Use span to obtain both the prefix and suffix. Use filterNot to drop all elements that satisfy the predicate.
- p
The predicate used to test elements.
- returns
the longest suffix of this stack whose first element does not satisfy the predicate
p
.
- Definition Classes
- IterableOps → IterableOnceOps
- def dropWhileInPlace(p: (A) => Boolean): Stack.this.type
Drops the longest prefix of elements that satisfy a predicate.
- def elementWise: ElementWiseExtractor[Int, A]
Returns an extractor object with a
unapplySeq
method, which extracts each element of a sequence data.Returns an extractor object with a
unapplySeq
method, which extracts each element of a sequence data.- Definition Classes
- PartialFunction
val firstChar: String => Option[Char] = _.headOption Seq("foo", "bar", "baz") match { case firstChar.unlift.elementWise(c0, c1, c2) => println(s"$c0, $c1, $c2") // Output: f, b, b }
Example: - def empty: Stack[A]
The empty iterable of the same type as this iterable.
The empty iterable of the same type as this iterable.
- returns
an empty iterable of type
C
.
- Definition Classes
- IterableFactoryDefaults → IterableOps
- def endsWith[B >: A](that: collection.Iterable[B]): Boolean
Tests whether this stack ends with the given sequence.
Tests whether this stack ends with the given sequence.
- that
the sequence to test
- returns
true
if this stack hasthat
as a suffix,false
otherwise.
- Definition Classes
- SeqOps
- def ensureSize(hint: Int): Unit
- Definition Classes
- ArrayDeque
- Annotations
- @inline()
- def ensuring(cond: (Stack[A]) => Boolean, msg: => Any): Stack[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toEnsuring[Stack[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: (Stack[A]) => Boolean): Stack[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toEnsuring[Stack[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: Boolean, msg: => Any): Stack[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toEnsuring[Stack[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- def ensuring(cond: Boolean): Stack[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toEnsuring[Stack[A]] performed by method Ensuring in scala.Predef.
- Definition Classes
- Ensuring
- final def eq(arg0: AnyRef): Boolean
Tests whether the argument (
that
) is a reference to the receiver object (this
).Tests whether the argument (
that
) is a reference to the receiver object (this
).The
eq
method implements an equivalence relation on non-null instances ofAnyRef
, and has three additional properties:- It is consistent: for any non-null instances
x
andy
of typeAnyRef
, multiple invocations ofx.eq(y)
consistently returnstrue
or consistently returnsfalse
. - For any non-null instance
x
of typeAnyRef
,x.eq(null)
andnull.eq(x)
returnsfalse
. null.eq(null)
returnstrue
.
When overriding the
equals
orhashCode
methods, it is important to ensure that their behavior is consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2
), they should be equal to each other (o1 == o2
) and they should hash to the same value (o1.hashCode == o2.hashCode
).- returns
true
if the argument is a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
- It is consistent: for any non-null instances
- def equals(o: Any): Boolean
Checks whether this instance is equal to
that
. - def exists(p: (A) => Boolean): Boolean
Tests whether a predicate holds for at least one element of this stack.
Tests whether a predicate holds for at least one element of this stack.
- p
the predicate used to test elements.
- returns
true
if the given predicatep
is satisfied by at least one element of this stack, otherwisefalse
- Definition Classes
- IterableOnceOps
- def filter(pred: (A) => Boolean): Stack[A]
Selects all elements of this stack which satisfy a predicate.
Selects all elements of this stack which satisfy a predicate.
- returns
a new stack consisting of all elements of this stack that satisfy the given predicate
p
. The order of the elements is preserved.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def filterImpl(pred: (A) => Boolean, isFlipped: Boolean): Stack[A]
- Attributes
- protected[collection]
- Definition Classes
- StrictOptimizedIterableOps
- def filterInPlace(p: (A) => Boolean): Stack.this.type
Replace the contents of this stack with the filtered result.
Replace the contents of this stack with the filtered result.
- returns
this stack
- Definition Classes
- IndexedBuffer
- def filterNot(pred: (A) => Boolean): Stack[A]
Selects all elements of this stack which do not satisfy a predicate.
Selects all elements of this stack which do not satisfy a predicate.
- pred
the predicate used to test elements.
- returns
a new stack consisting of all elements of this stack that do not satisfy the given predicate
pred
. Their order may not be preserved.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def finalize(): Unit
Called by the garbage collector on the receiver object when there are no more references to the object.
Called by the garbage collector on the receiver object when there are no more references to the object.
The details of when and if the
finalize
method is invoked, as well as the interaction betweenfinalize
and non-local returns and exceptions, are all platform dependent.- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- Note
not specified by SLS as a member of AnyRef
- def find(p: (A) => Boolean): Option[A]
Finds the first element of the stack satisfying a predicate, if any.
Finds the first element of the stack satisfying a predicate, if any.
- p
the predicate used to test elements.
- returns
an option value containing the first element in the stack that satisfies
p
, orNone
if none exists.
- Definition Classes
- IterableOnceOps
- def findLast(p: (A) => Boolean): Option[A]
Finds the last element of the stack satisfying a predicate, if any.
Finds the last element of the stack satisfying a predicate, if any.
- p
the predicate used to test elements.
- returns
an option value containing the last element in the stack that satisfies
p
, orNone
if none exists.
- Definition Classes
- SeqOps
- def flatMap[B](f: (A) => IterableOnce[B]): Stack[B]
Builds a new stack by applying a function to all elements of this stack and using the elements of the resulting collections.
Builds a new stack by applying a function to all elements of this stack and using the elements of the resulting collections.
For example:
def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")
The type of the resulting collection is guided by the static type of stack. This might cause unexpected results sometimes. For example:
// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet) // lettersOf will return a Set[Char], not a Seq def lettersOf(words: Seq[String]) = words.toSet flatMap ((word: String) => word.toSeq) // xs will be an Iterable[Int] val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2) // ys will be a Map[Int, Int] val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
- B
the element type of the returned collection.
- f
the function to apply to each element.
- returns
a new stack resulting from applying the given collection-valued function
f
to each element of this stack and concatenating the results.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def flatMapInPlace(f: (A) => IterableOnce[A]): Stack.this.type
Replace the contents of this stack with the flatmapped result.
Replace the contents of this stack with the flatmapped result.
- f
the mapping function
- returns
this stack
- Definition Classes
- IndexedBuffer
- def flatten[B](implicit toIterableOnce: (A) => IterableOnce[B]): Stack[B]
Converts this stack of iterable collections into a stack formed by the elements of these iterable collections.
Converts this stack of iterable collections into a stack formed by the elements of these iterable collections.
The resulting collection's type will be guided by the type of stack. For example:
val xs = List( Set(1, 2, 3), Set(1, 2, 3) ).flatten // xs == List(1, 2, 3, 1, 2, 3) val ys = Set( List(1, 2, 3), List(3, 2, 1) ).flatten // ys == Set(1, 2, 3)
- B
the type of the elements of each iterable collection.
- returns
a new stack resulting from concatenating all element stacks.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1
Applies the given binary operator
op
to the given initial valuez
and all elements of this stack.Applies the given binary operator
op
to the given initial valuez
and all elements of this stack.For each application of the operator, each operand is either an element of this stack, the initial value, or another such application of the operator.
The order of applications of the operator is unspecified and may be nondeterministic. Each element appears exactly once in the computation. The initial value may be used an arbitrary number of times, but at least once.
If this collection is ordered, then for any application of the operator, the element(s) appearing in the left operand will precede those in the right.
Note: might return different results for different runs, unless either of the following conditions is met: (1) the operator is associative, and the underlying collection type is ordered; or (2) the operator is associative and commutative. In either case, it is also necessary that the initial value be a neutral value for the operator, e.g.
Nil
forList
concatenation or1
for multiplication.The default implementation in
IterableOnce
is equivalent tofoldLeft
but may be overridden for more efficient traversal orders.- A1
The type parameter for the binary operator, a supertype of
A
.- z
An initial value; may be used an arbitrary number of times in the computation of the result; must be a neutral value for
op
for the result to always be the same across runs.- op
A binary operator; must be associative for the result to always be the same across runs.
- returns
The result of applying
op
between all the elements andz
, orz
if this stack is empty.
- Definition Classes
- IterableOnceOps
- def foldLeft[B](z: B)(op: (B, A) => B): B
Applies the given binary operator
op
to the given initial valuez
and all elements of this stack, going left to right.Applies the given binary operator
op
to the given initial valuez
and all elements of this stack, going left to right. Returns the initial value if this stack is empty."Going left to right" only makes sense if this collection is ordered: then if
x1
,x2
, ...,xn
are the elements of this stack, the result isop( op( ... op( op(z, x1), x2) ... ), xn)
.If this collection is not ordered, then for each application of the operator, each right operand is an element. In addition, the leftmost operand is the initial value, and each other left operand is itself an application of the operator. The elements of this stack and the initial value all appear exactly once in the computation.
- B
The result type of the binary operator.
- z
An initial value.
- op
A binary operator.
- returns
The result of applying
op
toz
and all elements of this stack, going left to right. Returnsz
if this stack is empty.
- Definition Classes
- IterableOnceOps
- def foldRight[B](z: B)(op: (A, B) => B): B
Applies the given binary operator
op
to all elements of this stack and the given initial valuez
, going right to left.Applies the given binary operator
op
to all elements of this stack and the given initial valuez
, going right to left. Returns the initial value if this stack is empty."Going right to left" only makes sense if this collection is ordered: then if
x1
,x2
, ...,xn
are the elements of this stack, the result isop(x1, op(x2, op( ... op(xn, z) ... )))
.If this collection is not ordered, then for each application of the operator, each left operand is an element. In addition, the rightmost operand is the initial value, and each other right operand is itself an application of the operator. The elements of this stack and the initial value all appear exactly once in the computation.
- B
The result type of the binary operator.
- z
An initial value.
- op
A binary operator.
- returns
The result of applying
op
to all elements of this stack andz
, going right to left. Returnsz
if this stack is empty.
- Definition Classes
- IndexedSeqOps → IterableOnceOps
- def forall(p: (A) => Boolean): Boolean
Tests whether a predicate holds for all elements of this stack.
Tests whether a predicate holds for all elements of this stack.
- p
the predicate used to test elements.
- returns
true
if this stack is empty or the given predicatep
holds for all elements of this stack, otherwisefalse
.
- Definition Classes
- IterableOnceOps
- def foreach[U](f: (A) => U): Unit
Applies
f
to each element for its side effects.Applies
f
to each element for its side effects. Note:U
parameter needed to help scalac's type inference.- Definition Classes
- IterableOnceOps
- def fromSpecific(coll: IterableOnce[A]): Stack[A]
Defines how to turn a given
Iterable[A]
into a collection of typeC
.Defines how to turn a given
Iterable[A]
into a collection of typeC
.This process can be done in a strict way or a non-strict way (ie. without evaluating the elements of the resulting collections). In other words, this methods defines the evaluation model of the collection.
- Attributes
- protected
- Definition Classes
- IterableFactoryDefaults → IterableOps
- Note
When implementing a custom collection type and refining
,C
to the new type, this method needs to be overridden (the compiler will issue an error otherwise). In the common case whereC =:= CC[A]
, this can be done by mixing in the scala.collection.IterableFactoryDefaults trait, which implements the method using iterableFactory.As witnessed by the
@uncheckedVariance
annotation, using this method might be unsound. However, as long as it is called with anIterable[A]
obtained fromthis
collection (as it is the case in the implementations of operations where we use aView[A]
), it is safe.
- final def getClass(): Class[_ <: AnyRef]
Returns the runtime class representation of the object.
- def groupBy[K](f: (A) => K): immutable.Map[K, Stack[A]]
Partitions this stack into a map of stacks according to some discriminator function.
Partitions this stack into a map of stacks according to some discriminator function.
Note: Even when applied to a view or a lazy collection it will always force the elements.
- K
the type of keys returned by the discriminator function.
- f
the discriminator function.
- returns
A map from keys to stacks such that the following invariant holds:
(xs groupBy f)(k) = xs filter (x => f(x) == k)
That is, every key
k
is bound to a stack of those elementsx
for whichf(x)
equalsk
.
- Definition Classes
- IterableOps
- def groupMap[K, B](key: (A) => K)(f: (A) => B): immutable.Map[K, Stack[B]]
Partitions this stack into a map of stacks according to a discriminator function
key
.Partitions this stack into a map of stacks according to a discriminator function
key
. Each element in a group is transformed into a value of typeB
using thevalue
function.It is equivalent to
groupBy(key).mapValues(_.map(f))
, but more efficient.case class User(name: String, age: Int) def namesByAge(users: Seq[User]): Map[Int, Seq[String]] = users.groupMap(_.age)(_.name)
Note: Even when applied to a view or a lazy collection it will always force the elements.
- K
the type of keys returned by the discriminator function
- B
the type of values returned by the transformation function
- key
the discriminator function
- f
the element transformation function
- Definition Classes
- IterableOps
- def groupMapReduce[K, B](key: (A) => K)(f: (A) => B)(reduce: (B, B) => B): immutable.Map[K, B]
Partitions this stack into a map according to a discriminator function
key
.Partitions this stack into a map according to a discriminator function
key
. All the values that have the same discriminator are then transformed by thef
function and then reduced into a single value with thereduce
function.It is equivalent to
groupBy(key).mapValues(_.map(f).reduce(reduce))
, but more efficient.def occurrences[A](as: Seq[A]): Map[A, Int] = as.groupMapReduce(identity)(_ => 1)(_ + _)
Note: Even when applied to a view or a lazy collection it will always force the elements.
- Definition Classes
- IterableOps
- def grouped(n: Int): Iterator[Stack[A]]
Partitions elements in fixed size stacks.
Partitions elements in fixed size stacks.
- returns
An iterator producing stacks of size
size
, except the last will be less than sizesize
if the elements don't divide evenly.
- Definition Classes
- ArrayDequeOps → IterableOps
- See also
scala.collection.Iterator, method
grouped
- def hashCode(): Int
The hashCode method for reference types.
- def head: A
Selects the first element of this stack.
Selects the first element of this stack.
- returns
the first element of this stack.
- Definition Classes
- IndexedSeqOps → IterableOps
- Exceptions thrown
NoSuchElementException
if the stack is empty.
- def headOption: Option[A]
Optionally selects the first element.
Optionally selects the first element.
- returns
the first element of this stack if it is nonempty,
None
if it is empty.
- Definition Classes
- IndexedSeqOps → IterableOps
- def indexOf[B >: A](elem: B): Int
Finds index of first occurrence of some value in this stack.
Finds index of first occurrence of some value in this stack.
- B
the type of the element
elem
.- elem
the element value to search for.
- returns
the index
>= 0
of the first element of this stack that is equal (as determined by==
) toelem
, or-1
, if none exists.
- Definition Classes
- SeqOps
- Annotations
- @deprecatedOverriding()
- def indexOf[B >: A](elem: B, from: Int): Int
Finds index of first occurrence of some value in this stack after or at some start index.
Finds index of first occurrence of some value in this stack after or at some start index.
- B
the type of the element
elem
.- elem
the element value to search for.
- from
the start index
- returns
the index
>= from
of the first element of this stack that is equal (as determined by==
) toelem
, or-1
, if none exists.
- Definition Classes
- SeqOps
- def indexOfSlice[B >: A](that: collection.Seq[B]): Int
Finds first index where this stack contains a given sequence as a slice.
Finds first index where this stack contains a given sequence as a slice.
- that
the sequence to test
- returns
the first index
>= 0
such that the elements of this stack starting at this index match the elements of sequencethat
, or-1
if no such subsequence exists.
- Definition Classes
- SeqOps
- Annotations
- @deprecatedOverriding()
- def indexOfSlice[B >: A](that: collection.Seq[B], from: Int): Int
Finds first index after or at a start index where this stack contains a given sequence as a slice.
Finds first index after or at a start index where this stack contains a given sequence as a slice.
- that
the sequence to test
- from
the start index
- returns
the first index
>= from
such that the elements of this stack starting at this index match the elements of sequencethat
, or-1
if no such subsequence exists.
- Definition Classes
- SeqOps
- def indexWhere(p: (A) => Boolean): Int
Finds index of the first element satisfying some predicate.
Finds index of the first element satisfying some predicate.
- p
the predicate used to test elements.
- returns
the index
>= 0
of the first element of this stack that satisfies the predicatep
, or-1
, if none exists.
- Definition Classes
- SeqOps
- Annotations
- @deprecatedOverriding()
- def indexWhere(p: (A) => Boolean, from: Int): Int
Finds index of the first element satisfying some predicate after or at some start index.
Finds index of the first element satisfying some predicate after or at some start index.
- p
the predicate used to test elements.
- from
the start index
- returns
the index
>= from
of the first element of this stack that satisfies the predicatep
, or-1
, if none exists.
- Definition Classes
- SeqOps
- def indices: immutable.Range
Produces the range of all indices of this sequence.
Produces the range of all indices of this sequence.
Note: Even when applied to a view or a lazy collection it will always force the elements.
- returns
a
Range
value from0
to one less than the length of this stack.
- Definition Classes
- SeqOps
- def init: Stack[A]
The initial part of the collection without its last element.
The initial part of the collection without its last element.
Note: Even when applied to a view or a lazy collection it will always force the elements.
- Definition Classes
- IterableOps
- def inits: Iterator[Stack[A]]
Iterates over the inits of this stack.
Iterates over the inits of this stack. The first value will be this stack and the final one will be an empty stack, with the intervening values the results of successive applications of
init
.Note: Even when applied to a view or a lazy collection it will always force the elements.
- returns
an iterator over all the inits of this stack
- Definition Classes
- IterableOps
List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)
Example: - def insert(idx: Int, elem: A): Unit
Inserts a new element at a given index into this buffer.
Inserts a new element at a given index into this buffer.
- idx
the index where the new elements is inserted.
- elem
the element to insert.
- Definition Classes
- ArrayDeque → Buffer
- Exceptions thrown
IndexOutOfBoundsException
if the indexidx
is not in the valid range0 <= idx <= length
.
- def insertAll(idx: Int, elems: IterableOnce[A]): Unit
Inserts new elements at the index
idx
.Inserts new elements at the index
idx
. Opposed to methodupdate
, this method will not replace an element with a new one. Instead, it will insert a new element at indexidx
.- idx
the index where a new element will be inserted.
- elems
the iterable object providing all elements to insert.
- Definition Classes
- ArrayDeque → Buffer
- Exceptions thrown
IndexOutOfBoundsException
ifidx
is out of bounds.
- def intersect[B >: A](that: collection.Seq[B]): Stack[A]
Computes the multiset intersection between this stack and another sequence.
Computes the multiset intersection between this stack and another sequence.
- that
the sequence of elements to intersect with.
- returns
a new stack which contains all elements of this stack which also appear in
that
. If an element valuex
appears n times inthat
, then the first n occurrences ofx
will be retained in the result, but any following occurrences will be omitted.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def isDefinedAt(idx: Int): Boolean
Tests whether this stack contains given index.
Tests whether this stack contains given index.
The implementations of methods
apply
andisDefinedAt
turn aSeq[A]
into aPartialFunction[Int, A]
.- idx
the index to test
- returns
true
if this stack contains an element at positionidx
,false
otherwise.
- Definition Classes
- SeqOps
- def isEmpty: Boolean
Tests whether the stack is empty.
Tests whether the stack is empty.
Note: The default implementation creates and discards an iterator.
Note: Implementations in subclasses that are not repeatedly iterable must take care not to consume any elements when
isEmpty
is called.- returns
true
if the stack contains no elements,false
otherwise.
- Definition Classes
- ArrayDeque → SeqOps → IterableOnceOps
- final def isInstanceOf[T0]: Boolean
Test whether the dynamic type of the receiver object has the same erasure as
T0
.Test whether the dynamic type of the receiver object has the same erasure as
T0
.Depending on what
T0
is, the test is done in one of the below ways:T0
is a non-parameterized class type, e.g.BigDecimal
: this method returnstrue
if the value of the receiver object is aBigDecimal
or a subtype ofBigDecimal
.T0
is a parameterized class type, e.g.List[Int]
: this method returnstrue
if the value of the receiver object is someList[X]
for anyX
. For example,List(1, 2, 3).isInstanceOf[List[String]]
will return true.T0
is some singleton typex.type
or literalx
: this method returnsthis.eq(x)
. For example,x.isInstanceOf[1]
is equivalent tox.eq(1)
T0
is an intersectionX with Y
orX & Y: this method is equivalent to
x.isInstanceOf[X] && x.isInstanceOf[Y]T0
is a unionX | Y
: this method is equivalent tox.isInstanceOf[X] || x.isInstanceOf[Y]
T0
is a type parameter or an abstract type member: this method is equivalent toisInstanceOf[U]
whereU
isT0
's upper bound,Any
ifT0
is unbounded. For example,x.isInstanceOf[A]
whereA
is an unbounded type parameter will return true for any value ofx
.
This is exactly equivalent to the type pattern
_: T0
- returns
true
if the receiver object is an instance of erasure of typeT0
;false
otherwise.
- Definition Classes
- Any
- Note
due to the unexpectedness of
List(1, 2, 3).isInstanceOf[List[String]]
returning true andx.isInstanceOf[A]
whereA
is a type parameter or abstract member returning true, these forms issue a warning.
- def isTraversableAgain: Boolean
Tests whether this stack can be repeatedly traversed.
Tests whether this stack can be repeatedly traversed. Always true for Iterables and false for Iterators unless overridden.
- returns
true
if it is repeatedly traversable,false
otherwise.
- Definition Classes
- IterableOps → IterableOnceOps
- def iterableFactory: SeqFactory[Stack]
The companion object of this stack, providing various factory methods.
The companion object of this stack, providing various factory methods.
- Definition Classes
- Stack → ArrayDeque → IndexedBuffer → IndexedSeq → IndexedSeq → Buffer → Seq → Iterable → Seq → Iterable → IterableOps
- Note
When implementing a custom collection type and refining
CC
to the new type, this method needs to be overridden to return a factory for the new type (the compiler will issue an error otherwise).
- def iterator: Iterator[A]
An scala.collection.Iterator over the elements of this stack.
An scala.collection.Iterator over the elements of this stack.
If an
IterableOnce
object is in fact an scala.collection.Iterator, this method always returns itself, in its current state, but if it is an scala.collection.Iterable, this method always returns a new scala.collection.Iterator.- Definition Classes
- IndexedSeqOps → IterableOnce
- def klone(): Stack[A]
- Attributes
- protected
- Definition Classes
- Stack → ArrayDeque → ArrayDequeOps
- def knownSize: Int
The number of elements in this stack, if it can be cheaply computed, -1 otherwise.
The number of elements in this stack, if it can be cheaply computed, -1 otherwise. Cheaply usually means: Not requiring a collection traversal.
- Definition Classes
- ArrayDeque → IndexedSeqOps → Buffer → Growable → IterableOnce
- def last: A
Selects the last element.
Selects the last element.
- returns
The last element of this stack.
- Definition Classes
- IndexedSeqOps → IterableOps
- Exceptions thrown
NoSuchElementException
If the stack is empty.
- def lastIndexOf[B >: A](elem: B, end: Int = length - 1): Int
Finds index of last occurrence of some value in this stack before or at a given end index.
Finds index of last occurrence of some value in this stack before or at a given end index.
- B
the type of the element
elem
.- elem
the element value to search for.
- end
the end index.
- returns
the index
<= end
of the last element of this stack that is equal (as determined by==
) toelem
, or-1
, if none exists.
- Definition Classes
- SeqOps
- def lastIndexOfSlice[B >: A](that: collection.Seq[B]): Int
Finds last index where this stack contains a given sequence as a slice.
Finds last index where this stack contains a given sequence as a slice.
- that
the sequence to test
- returns
the last index such that the elements of this stack starting at this index match the elements of sequence
that
, or-1
if no such subsequence exists.
- Definition Classes
- SeqOps
- Annotations
- @deprecatedOverriding()
- def lastIndexOfSlice[B >: A](that: collection.Seq[B], end: Int): Int
Finds last index before or at a given end index where this stack contains a given sequence as a slice.
Finds last index before or at a given end index where this stack contains a given sequence as a slice.
- that
the sequence to test
- end
the end index
- returns
the last index
<= end
such that the elements of this stack starting at this index match the elements of sequencethat
, or-1
if no such subsequence exists.
- Definition Classes
- SeqOps
- def lastIndexWhere(p: (A) => Boolean): Int
Finds index of last element satisfying some predicate.
Finds index of last element satisfying some predicate.
- p
the predicate used to test elements.
- returns
the index of the last element of this stack that satisfies the predicate
p
, or-1
, if none exists.
- Definition Classes
- SeqOps
- Annotations
- @deprecatedOverriding()
- def lastIndexWhere(p: (A) => Boolean, end: Int): Int
Finds index of last element satisfying some predicate before or at given end index.
Finds index of last element satisfying some predicate before or at given end index.
- p
the predicate used to test elements.
- returns
the index
<= end
of the last element of this stack that satisfies the predicatep
, or-1
, if none exists.
- Definition Classes
- SeqOps
- def lastOption: Option[A]
Optionally selects the last element.
Optionally selects the last element.
- returns
the last element of this stack$ if it is nonempty,
None
if it is empty.
- Definition Classes
- IterableOps
- def lazyZip[B](that: collection.Iterable[B]): LazyZip2[A, B, Stack.this.type]
Analogous to
zip
except that the elements in each collection are not consumed until a strict operation is invoked on the returnedLazyZip2
decorator.Analogous to
zip
except that the elements in each collection are not consumed until a strict operation is invoked on the returnedLazyZip2
decorator.Calls to
lazyZip
can be chained to support higher arities (up to 4) without incurring the expense of constructing and deconstructing intermediary tuples.val xs = List(1, 2, 3) val res = (xs lazyZip xs lazyZip xs lazyZip xs).map((a, b, c, d) => a + b + c + d) // res == List(4, 8, 12)
- B
the type of the second element in each eventual pair
- that
the iterable providing the second element of each eventual pair
- returns
a decorator
LazyZip2
that allows strict operations to be performed on the lazily evaluated pairs or chained calls tolazyZip
. Implicit conversion toIterable[(A, B)]
is also supported.
- Definition Classes
- Iterable
- def length: Int
The length (number of elements) of the stack.
The length (number of elements) of the stack.
size
is an alias forlength
inSeq
collections.- Definition Classes
- ArrayDeque → SeqOps
- final def lengthCompare(that: collection.Iterable[_]): Int
Compares the length of this stack to the size of another
Iterable
.Compares the length of this stack to the size of another
Iterable
.- that
the
Iterable
whose size is compared with this stack's length.- returns
A value
x
wherex < 0 if this.length < that.size x == 0 if this.length == that.size x > 0 if this.length > that.size
The method as implemented here does not call
length
orsize
directly; its running time isO(this.length min that.size)
instead ofO(this.length + that.size)
. The method should be overridden if computingsize
is cheap andknownSize
returns-1
.
- Definition Classes
- IndexedSeqOps → SeqOps
- final def lengthCompare(len: Int): Int
Compares the length of this stack to a test value.
Compares the length of this stack to a test value.
- len
the test value that gets compared with the length.
- returns
A value
x
wherex < 0 if this.length < len x == 0 if this.length == len x > 0 if this.length > len
The method as implemented here does not call
length
directly; its running time isO(length min len)
instead ofO(length)
. The method should be overridden if computinglength
is cheap andknownSize
returns-1
.
- Definition Classes
- IndexedSeqOps → SeqOps
- See also
- final def lengthIs: SizeCompareOps
Returns a value class containing operations for comparing the length of this stack to a test value.
Returns a value class containing operations for comparing the length of this stack to a test value.
These operations are implemented in terms of
lengthCompare(Int)
, and allow the following more readable usages:this.lengthIs < len // this.lengthCompare(len) < 0 this.lengthIs <= len // this.lengthCompare(len) <= 0 this.lengthIs == len // this.lengthCompare(len) == 0 this.lengthIs != len // this.lengthCompare(len) != 0 this.lengthIs >= len // this.lengthCompare(len) >= 0 this.lengthIs > len // this.lengthCompare(len) > 0
- def lift: (Int) => Option[A]
Turns this partial function into a plain function returning an
Option
result.Turns this partial function into a plain function returning an
Option
result.- returns
a function that takes an argument
x
toSome(this(x))
ifthis
is defined forx
, and toNone
otherwise.
- Definition Classes
- PartialFunction
- See also
Function.unlift
- def map[B](f: (A) => B): Stack[B]
Builds a new stack by applying a function to all elements of this stack.
Builds a new stack by applying a function to all elements of this stack.
- B
the element type of the returned stack.
- f
the function to apply to each element.
- returns
a new stack resulting from applying the given function
f
to each element of this stack and collecting the results.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def mapInPlace(f: (A) => A): Stack.this.type
Modifies this stack by applying a function to all elements of this stack.
Modifies this stack by applying a function to all elements of this stack.
- f
the function to apply to each element.
- returns
this stack modified by replacing all elements with the result of applying the given function
f
to each element of this stack.
- Definition Classes
- IndexedSeqOps
- def max[B >: A](implicit ord: math.Ordering[B]): A
Finds the largest element.
Finds the largest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
the largest element of this stack with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this stack is empty.
- def maxBy[B](f: (A) => B)(implicit ord: math.Ordering[B]): A
Finds the first element which yields the largest value measured by function
f
.Finds the first element which yields the largest value measured by function
f
.- B
The result type of the function
f
.- f
The measuring function.
- returns
the first element of this stack with the largest value measured by function
f
with respect to the orderingcmp
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this stack is empty.
- def maxByOption[B](f: (A) => B)(implicit ord: math.Ordering[B]): Option[A]
Finds the first element which yields the largest value measured by function
f
.Finds the first element which yields the largest value measured by function
f
.- B
The result type of the function
f
.- f
The measuring function.
- returns
an option value containing the first element of this stack with the largest value measured by function
f
with respect to the orderingcmp
.
- Definition Classes
- IterableOnceOps
- def maxOption[B >: A](implicit ord: math.Ordering[B]): Option[A]
Finds the largest element.
Finds the largest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
an option value containing the largest element of this stack with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- def min[B >: A](implicit ord: math.Ordering[B]): A
Finds the smallest element.
Finds the smallest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
the smallest element of this stack with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this stack is empty.
- def minBy[B](f: (A) => B)(implicit ord: math.Ordering[B]): A
Finds the first element which yields the smallest value measured by function
f
.Finds the first element which yields the smallest value measured by function
f
.- B
The result type of the function
f
.- f
The measuring function.
- returns
the first element of this stack with the smallest value measured by function
f
with respect to the orderingcmp
.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this stack is empty.
- def minByOption[B](f: (A) => B)(implicit ord: math.Ordering[B]): Option[A]
Finds the first element which yields the smallest value measured by function
f
.Finds the first element which yields the smallest value measured by function
f
.- B
The result type of the function
f
.- f
The measuring function.
- returns
an option value containing the first element of this stack with the smallest value measured by function
f
with respect to the orderingcmp
.
- Definition Classes
- IterableOnceOps
- def minOption[B >: A](implicit ord: math.Ordering[B]): Option[A]
Finds the smallest element.
Finds the smallest element.
- B
The type over which the ordering is defined.
- ord
An ordering to be used for comparing elements.
- returns
an option value containing the smallest element of this stack with respect to the ordering
ord
.
- Definition Classes
- IterableOnceOps
- final def mkString: String
Displays all elements of this stack in a string.
Displays all elements of this stack in a string.
Delegates to addString, which can be overridden.
- returns
a string representation of this stack. In the resulting string the string representations (w.r.t. the method
toString
) of all elements of this stack follow each other without any separator string.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- final def mkString(sep: String): String
Displays all elements of this stack in a string using a separator string.
Displays all elements of this stack in a string using a separator string.
Delegates to addString, which can be overridden.
- sep
the separator string.
- returns
a string representation of this stack. In the resulting string the string representations (w.r.t. the method
toString
) of all elements of this stack are separated by the stringsep
.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
List(1, 2, 3).mkString("|") = "1|2|3"
Example: - final def mkString(start: String, sep: String, end: String): String
Displays all elements of this stack in a string using start, end, and separator strings.
Displays all elements of this stack in a string using start, end, and separator strings.
Delegates to addString, which can be overridden.
- start
the starting string.
- sep
the separator string.
- end
the ending string.
- returns
a string representation of this stack. The resulting string begins with the string
start
and ends with the stringend
. Inside, the string representations (w.r.t. the methodtoString
) of all elements of this stack are separated by the stringsep
.
- Definition Classes
- IterableOnceOps
List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"
Example: - final def ne(arg0: AnyRef): Boolean
Equivalent to
!(this eq that)
.Equivalent to
!(this eq that)
.- returns
true
if the argument is not a reference to the receiver object;false
otherwise.
- Definition Classes
- AnyRef
- def newSpecificBuilder: Builder[A, Stack[A]]
- returns
a strict builder for the same collection type. Note that in the case of lazy collections (e.g. scala.collection.View or scala.collection.immutable.LazyList), it is possible to implement this method but the resulting
Builder
will break laziness. As a consequence, operations should preferably be implemented withfromSpecific
instead of this method.
- Attributes
- protected
- Definition Classes
- IterableFactoryDefaults → IterableOps
- Note
When implementing a custom collection type and refining
,C
to the new type, this method needs to be overridden (the compiler will issue an error otherwise). In the common case whereC =:= CC[A]
, this can be done by mixing in the scala.collection.IterableFactoryDefaults trait, which implements the method using iterableFactory.As witnessed by the
@uncheckedVariance
annotation, using this method might be unsound. However, as long as the returned builder is only fed withA
values taken fromthis
instance, it is safe.
- def nonEmpty: Boolean
Tests whether the stack is not empty.
Tests whether the stack is not empty.
- returns
true
if the stack contains at least one element,false
otherwise.
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecatedOverriding()
- final def notify(): Unit
Wakes up a single thread that is waiting on the receiver object's monitor.
Wakes up a single thread that is waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
- final def notifyAll(): Unit
Wakes up all threads that are waiting on the receiver object's monitor.
Wakes up all threads that are waiting on the receiver object's monitor.
- Definition Classes
- AnyRef
- Annotations
- @native()
- Note
not specified by SLS as a member of AnyRef
- def occCounts[B](sq: collection.Seq[B]): Map[B, Int]
- Attributes
- protected[collection]
- Definition Classes
- SeqOps
- def ofArray(array: Array[AnyRef], end: Int): Stack[A]
- Attributes
- protected
- Definition Classes
- Stack → ArrayDeque → ArrayDequeOps
- def orElse[A1 <: Int, B1 >: A](that: PartialFunction[A1, B1]): PartialFunction[A1, B1]
Composes this partial function with a fallback partial function which gets applied where this partial function is not defined.
Composes this partial function with a fallback partial function which gets applied where this partial function is not defined.
- A1
the argument type of the fallback function
- B1
the result type of the fallback function
- that
the fallback function
- returns
a partial function which has as domain the union of the domains of this partial function and
that
. The resulting partial function takesx
tothis(x)
wherethis
is defined, and tothat(x)
where it is not.
- Definition Classes
- PartialFunction
- def padTo[B >: A](len: Int, elem: B): Stack[B]
A copy of this stack with an element value appended until a given target length is reached.
A copy of this stack with an element value appended until a given target length is reached.
- B
the element type of the returned stack.
- len
the target length
- elem
the padding value
- returns
a new stack consisting of all elements of this stack followed by the minimal number of occurrences of
elem
so that the resulting collection has a length of at leastlen
.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def padToInPlace(len: Int, elem: A): Stack.this.type
Append the given element to this stack until a target length is reached.
Append the given element to this stack until a target length is reached.
- len
the target length
- elem
the padding value
- returns
this stack
- Definition Classes
- Buffer
- def partition(p: (A) => Boolean): (Stack[A], Stack[A])
A pair of, first, all elements that satisfy predicate
p
and, second, all elements that do not.A pair of, first, all elements that satisfy predicate
p
and, second, all elements that do not.The two stack correspond to the result of filter and filterNot, respectively.
The default implementation provided here needs to traverse the collection twice. Strict collections have an overridden version of
partition
inStrictOptimizedIterableOps
, which requires only a single traversal.- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def partitionMap[A1, A2](f: (A) => Either[A1, A2]): (Stack[A1], Stack[A2])
Applies a function
f
to each element of the stack and returns a pair of stacks: the first one made of those values returned byf
that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.Applies a function
f
to each element of the stack and returns a pair of stacks: the first one made of those values returned byf
that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.Example:
val xs = `Stack`(1, "one", 2, "two", 3, "three") partitionMap { case i: Int => Left(i) case s: String => Right(s) } // xs == (`Stack`(1, 2, 3), // `Stack`(one, two, three))
- A1
the element type of the first resulting collection
- A2
the element type of the second resulting collection
- f
the 'split function' mapping the elements of this stack to an scala.util.Either
- returns
a pair of stacks: the first one made of those values returned by
f
that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def patch[B >: A](from: Int, other: IterableOnce[B], replaced: Int): Stack[B]
Produces a new stack where a slice of elements in this stack is replaced by another sequence.
Produces a new stack where a slice of elements in this stack is replaced by another sequence.
Patching at negative indices is the same as patching starting at 0. Patching at indices at or larger than the length of the original stack appends the patch to the end. If the
replaced
count would exceed the available elements, the difference in excess is ignored.- B
the element type of the returned stack.
- from
the index of the first replaced element
- other
the replacement sequence
- replaced
the number of elements to drop in the original stack
- returns
a new stack consisting of all elements of this stack except that
replaced
elements starting fromfrom
are replaced by all the elements ofother
.
- Definition Classes
- SeqOps
- def patchInPlace(from: Int, patch: IterableOnce[A], replaced: Int): Stack.this.type
Replaces a slice of elements in this stack by another sequence of elements.
Replaces a slice of elements in this stack by another sequence of elements.
Patching at negative indices is the same as patching starting at 0. Patching at indices at or larger than the length of the original stack appends the patch to the end. If the
replaced
count would exceed the available elements, the difference in excess is ignored.- from
the index of the first replaced element
- patch
the replacement sequence
- replaced
the number of elements to drop in the original stack
- returns
this stack
- Definition Classes
- IndexedBuffer → Buffer
- def permutations: Iterator[Stack[A]]
Iterates over distinct permutations of elements.
Iterates over distinct permutations of elements.
Note: Even when applied to a view or a lazy collection it will always force the elements.
- returns
An Iterator which traverses the distinct permutations of this stack.
- Definition Classes
- SeqOps
Seq('a', 'b', 'b').permutations.foreach(println) // List(a, b, b) // List(b, a, b) // List(b, b, a)
Example: - def pop(): A
Removes the top element from this stack and return it
Removes the top element from this stack and return it
- Exceptions thrown
NoSuchElementException
when stack is empty
- def popAll(): collection.Seq[A]
Pop all elements from this stack and return it
Pop all elements from this stack and return it
- returns
The removed elements
- def popWhile(f: (A) => Boolean): collection.Seq[A]
Returns and removes all elements from the top of this stack which satisfy the given predicate
Returns and removes all elements from the top of this stack which satisfy the given predicate
- f
the predicate used for choosing elements
- returns
The removed elements
- def prepend(elem: A): Stack.this.type
Prepends a single element at the front of this stack.
Prepends a single element at the front of this stack.
- elem
the element to add.
- returns
the stack itself
- Definition Classes
- ArrayDeque → Buffer
- def prependAll(elems: IterableOnce[A]): Stack.this.type
Prepends the elements contained in a iterable object to this buffer.
Prepends the elements contained in a iterable object to this buffer.
- elems
the iterable object containing the elements to append.
- returns
this stack
- Definition Classes
- ArrayDeque → Buffer
- def prepended[B >: A](elem: B): Stack[B]
A copy of the stack with an element prepended.
A copy of the stack with an element prepended.
Also, the original stack is not modified, so you will want to capture the result.
Example:
scala> val x = List(1) x: List[Int] = List(1) scala> val y = 2 +: x y: List[Int] = List(2, 1) scala> println(x) List(1)
- B
the element type of the returned stack.
- elem
the prepended element
- returns
a new stack consisting of
value
followed by all elements of this stack.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def prependedAll[B >: A](prefix: IterableOnce[B]): Stack[B]
As with
:++
, returns a new collection containing the elements from the left operand followed by the elements from the right operand.As with
:++
, returns a new collection containing the elements from the left operand followed by the elements from the right operand.It differs from
:++
in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.- B
the element type of the returned collection.
- prefix
the iterable to prepend.
- returns
a new stack which contains all elements of
prefix
followed by all the elements of this stack.
- Definition Classes
- StrictOptimizedSeqOps → SeqOps
- def product[B >: A](implicit num: math.Numeric[B]): B
Multiplies together the elements of this collection.
Multiplies together the elements of this collection.
The default implementation uses
reduce
for a known non-empty collection,foldLeft
otherwise.- B
the result type of the
*
operator.- num
an implicit parameter defining a set of numeric operations which includes the
*
operator to be used in forming the product.- returns
the product of all elements of this stack with respect to the
*
operator innum
.
- Definition Classes
- IterableOnceOps
- def push(elem1: A, elem2: A, elems: A*): Stack.this.type
Push two or more elements onto the stack.
Push two or more elements onto the stack. The last element of the sequence will be on top of the new stack.
- elems
the element sequence.
- returns
the stack with the new elements on top.
- def push(elem: A): Stack.this.type
Add elements to the top of this stack
- def pushAll(elems: IterableOnce[A]): Stack.this.type
Push all elements in the given iterable object onto the stack.
Push all elements in the given iterable object onto the stack. The last element in the iterable object will be on top of the new stack.
- elems
the iterable object.
- returns
the stack with the new elements on top.
- def reduce[B >: A](op: (B, B) => B): B
Applies the given binary operator
op
to all elements of this stack.Applies the given binary operator
op
to all elements of this stack.For each application of the operator, each operand is either an element of this stack or another such application of the operator. The order of applications of the operator is unspecified and may be nondeterministic. Each element appears exactly once in the computation.
If this collection is ordered, then for any application of the operator, the element(s) appearing in the left operand will precede those in the right.
Note: might return different results for different runs, unless either of the following conditions is met: (1) the operator is associative, and the underlying collection type is ordered; or (2) the operator is associative and commutative.
- B
The type parameter for the binary operator, a supertype of
A
.- op
A binary operator; must be associative for the result to always be the same across runs.
- returns
The result of applying
op
between all the elements if the stack is nonempty.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this stack is empty.
- def reduceLeft[B >: A](op: (B, A) => B): B
Applies the given binary operator
op
to all elements of this stack, going left to right.Applies the given binary operator
op
to all elements of this stack, going left to right."Going left to right" only makes sense if this collection is ordered: then if
x1
,x2
, ...,xn
are the elements of this stack, the result isop( op( op( ... op(x1, x2) ... ), xn-1), xn)
.If this collection is not ordered, then for each application of the operator, each right operand is an element. In addition, the leftmost operand is the first element of this stack and each other left operand is itself an application of the operator. Each element appears exactly once in the computation.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
The result type of the binary operator, a supertype of
A
.- op
A binary operator.
- returns
The result of applying
op
to all elements of this stack, going left to right.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this stack is empty.
- def reduceLeftOption[B >: A](op: (B, A) => B): Option[B]
If this stack is nonempty, reduces it with the given binary operator
op
, going left to right.If this stack is nonempty, reduces it with the given binary operator
op
, going left to right.The behavior is the same as reduceLeft except that the value is
None
if the stack is empty. Each element appears exactly once in the computation.Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
The result type of the binary operator, a supertype of
A
.- op
A binary operator.
- returns
The result of reducing this stack with
op
going left to right if the stack is nonempty, inside aSome
, andNone
otherwise.
- Definition Classes
- IterableOnceOps
- def reduceOption[B >: A](op: (B, B) => B): Option[B]
If this stack is nonempty, reduces it with the given binary operator
op
.If this stack is nonempty, reduces it with the given binary operator
op
.The behavior is the same as reduce except that the value is
None
if the stack is empty. The order of applications of the operator is unspecified and may be nondeterministic. Each element appears exactly once in the computation.Note: might return different results for different runs, unless either of the following conditions is met: (1) the operator is associative, and the underlying collection type is ordered; or (2) the operator is associative and commutative.
- B
A type parameter for the binary operator, a supertype of
A
.- op
A binary operator; must be associative for the result to always be the same across runs.
- returns
The result of reducing this stack with
op
if the stack is nonempty, inside aSome
, andNone
otherwise.
- Definition Classes
- IterableOnceOps
- def reduceRight[B >: A](op: (A, B) => B): B
Applies the given binary operator
op
to all elements of this stack, going right to left.Applies the given binary operator
op
to all elements of this stack, going right to left."Going right to left" only makes sense if this collection is ordered: then if
x1
,x2
, ...,xn
are the elements of this stack, the result isop(x1, op(x2, op( ... op(xn-1, xn) ... )))
.If this collection is not ordered, then for each application of the operator, each left operand is an element. In addition, the rightmost operand is the last element of this stack and each other right operand is itself an application of the operator. Each element appears exactly once in the computation.
Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
The result type of the binary operator, a supertype of
A
.- op
A binary operator.
- returns
The result of applying
op
to all elements of this stack, going right to left.
- Definition Classes
- IterableOnceOps
- Exceptions thrown
UnsupportedOperationException
if this stack is empty.
- def reduceRightOption[B >: A](op: (A, B) => B): Option[B]
If this stack is nonempty, reduces it with the given binary operator
op
, going right to left.If this stack is nonempty, reduces it with the given binary operator
op
, going right to left.The behavior is the same as reduceRight except that the value is
None
if the stack is empty. Each element appears exactly once in the computation.Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.
- B
The result type of the binary operator, a supertype of
A
.- op
A binary operator.
- returns
The result of reducing this stack with
op
going right to left if the stack is nonempty, inside aSome
, andNone
otherwise.
- Definition Classes
- IterableOnceOps
- def remove(idx: Int): A
Removes the element at a given index position.
Removes the element at a given index position.
- idx
the index which refers to the element to delete.
- returns
the element that was formerly at index
idx
.
- Definition Classes
- ArrayDeque → Buffer
- def remove(idx: Int, count: Int): Unit
Removes the element on a given index position.
Removes the element on a given index position. It takes time linear in the buffer size.
- idx
the index which refers to the first element to remove.
- count
the number of elements to remove.
- Definition Classes
- ArrayDeque → Buffer
- Exceptions thrown
IllegalArgumentException
ifcount < 0
.IndexOutOfBoundsException
if the indexidx
is not in the valid range0 <= idx <= length - count
(withcount > 0
).
- def removeAll(p: (A) => Boolean): immutable.Seq[A]
Returns all elements in this collection which satisfy the given predicate and removes those elements from this collections.
Returns all elements in this collection which satisfy the given predicate and removes those elements from this collections.
- p
the predicate used for choosing elements
- returns
a sequence of all elements in the queue for which p yields true.
- Definition Classes
- ArrayDeque
- def removeAll(): immutable.Seq[A]
Remove all elements from this collection and return the elements while emptying this data structure
Remove all elements from this collection and return the elements while emptying this data structure
- Definition Classes
- ArrayDeque
- def removeAllReverse(): immutable.Seq[A]
Remove all elements from this collection and return the elements in reverse while emptying this data structure
Remove all elements from this collection and return the elements in reverse while emptying this data structure
- Definition Classes
- ArrayDeque
- def removeFirst(p: (A) => Boolean, from: Int = 0): Option[A]
Returns the first element which satisfies the given predicate after or at some start index and removes this element from the collections
Returns the first element which satisfies the given predicate after or at some start index and removes this element from the collections
- p
the predicate used for choosing the first element
- from
the start index
- returns
the first element of the queue for which p yields true
- Definition Classes
- ArrayDeque
- def removeHead(resizeInternalRepr: Boolean = false): A
Unsafely remove the first element (throws exception when empty) See also removeHeadOption()
Unsafely remove the first element (throws exception when empty) See also removeHeadOption()
- resizeInternalRepr
If this is set, resize the internal representation to reclaim space once in a while
- Definition Classes
- ArrayDeque
- Exceptions thrown
NoSuchElementException
when empty
- def removeHeadOption(resizeInternalRepr: Boolean = false): Option[A]
- resizeInternalRepr
If this is set, resize the internal representation to reclaim space once in a while
- Definition Classes
- ArrayDeque
- def removeHeadWhile(f: (A) => Boolean): immutable.Seq[A]
Returns and removes all elements from the left of this queue which satisfy the given predicate
Returns and removes all elements from the left of this queue which satisfy the given predicate
- f
the predicate used for choosing elements
- Definition Classes
- ArrayDeque
- def removeLast(resizeInternalRepr: Boolean = false): A
Unsafely remove the last element (throws exception when empty) See also removeLastOption()
Unsafely remove the last element (throws exception when empty) See also removeLastOption()
- resizeInternalRepr
If this is set, resize the internal representation to reclaim space once in a while
- Definition Classes
- ArrayDeque
- Exceptions thrown
NoSuchElementException
when empty
- def removeLastOption(resizeInternalRepr: Boolean = false): Option[A]
- resizeInternalRepr
If this is set, resize the internal representation to reclaim space once in a while
- Definition Classes
- ArrayDeque
- def removeLastWhile(f: (A) => Boolean): immutable.Seq[A]
Returns and removes all elements from the right of this queue which satisfy the given predicate
Returns and removes all elements from the right of this queue which satisfy the given predicate
- f
the predicate used for choosing elements
- Definition Classes
- ArrayDeque
- final def requireBounds(idx: Int, until: Int = length): Unit
- Attributes
- protected
- Definition Classes
- ArrayDequeOps
- Annotations
- @inline()
- def reverse: Stack[A]
Returns a new stack with the elements of this stack in reverse order.
Returns a new stack with the elements of this stack in reverse order.
Note: Even when applied to a view or a lazy collection it will always force the elements.
- returns
a new stack with all elements of this stack in reverse order.
- Definition Classes
- ArrayDequeOps → SeqOps
- def reverseIterator: Iterator[A]
An iterator yielding the elements of this stack in reverse order.
An iterator yielding the elements of this stack in reverse order.
Note:
xs.reverseIterator
is the same asxs.reverse.iterator
but might be more efficient.- returns
an iterator yielding the elements of this stack in reverse order.
- Definition Classes
- IndexedSeqOps → SeqOps
- def reversed: collection.Iterable[A]
- Attributes
- protected
- Definition Classes
- IndexedSeqOps → IterableOnceOps
- def runWith[U](action: (A) => U): (Int) => Boolean
Composes this partial function with an action function which gets applied to results of this partial function.
Composes this partial function with an action function which gets applied to results of this partial function. The action function is invoked only for its side effects; its result is ignored.
Note that expression
pf.runWith(action)(x)
is equivalent toif(pf isDefinedAt x) { action(pf(x)); true } else false
except that
runWith
is implemented viaapplyOrElse
and thus potentially more efficient. UsingrunWith
avoids double evaluation of pattern matchers and guards for partial function literals.- action
the action function
- returns
a function which maps arguments
x
toisDefinedAt(x)
. The resulting function runsaction(this(x))
wherethis
is defined.
- Definition Classes
- PartialFunction
- See also
applyOrElse
.
- def sameElements[B >: A](that: IterableOnce[B]): Boolean
Tests whether the elements of this collection are the same (and in the same order) as those of
that
.Tests whether the elements of this collection are the same (and in the same order) as those of
that
.- Definition Classes
- SeqOps
- def scan[B >: A](z: B)(op: (B, B) => B): Stack[B]
Computes a prefix scan of the elements of the collection.
Computes a prefix scan of the elements of the collection.
Note: The neutral element
z
may be applied more than once.- B
element type of the resulting collection
- z
neutral element for the operator
op
- op
the associative operator for the scan
- returns
a new stack containing the prefix scan of the elements in this stack
- Definition Classes
- IterableOps
- def scanLeft[B](z: B)(op: (B, A) => B): Stack[B]
Produces a stack containing cumulative results of applying the operator going left to right, including the initial value.
Produces a stack containing cumulative results of applying the operator going left to right, including the initial value.
- B
the type of the elements in the resulting collection
- z
the initial value
- op
the binary operator applied to the intermediate result and the element
- returns
collection with intermediate results
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def scanRight[B](z: B)(op: (A, B) => B): Stack[B]
Produces a collection containing cumulative results of applying the operator going right to left.
Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.
Note: Even when applied to a view or a lazy collection it will always force the elements.
Example:
List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
- B
the type of the elements in the resulting collection
- z
the initial value
- op
the binary operator applied to the intermediate result and the element
- returns
collection with intermediate results
- Definition Classes
- IterableOps
- def search[B >: A](elem: B, from: Int, to: Int)(implicit ord: math.Ordering[B]): SearchResult
Searches within an interval in this sorted sequence for a specific element.
Searches within an interval in this sorted sequence for a specific element. If this sequence is an
IndexedSeq
, a binary search is used. Otherwise, a linear search is used.The sequence should be sorted with the same
Ordering
before calling; otherwise, the results are undefined.- elem
the element to find.
- from
the index where the search starts.
- to
the index following where the search ends.
- ord
the ordering to be used to compare elements.
- returns
a
Found
value containing the index corresponding to the element in the sequence, or theInsertionPoint
where the element would be inserted if the element is not in the sequence.
- Definition Classes
- IndexedSeqOps → SeqOps
- Note
if
to <= from
, the search space is empty, and anInsertionPoint
atfrom
is returned- See also
scala.collection.SeqOps, method
sorted
- def search[B >: A](elem: B)(implicit ord: math.Ordering[B]): SearchResult
Searches this sorted sequence for a specific element.
Searches this sorted sequence for a specific element. If the sequence is an
IndexedSeq
, a binary search is used. Otherwise, a linear search is used.The sequence should be sorted with the same
Ordering
before calling; otherwise, the results are undefined.- elem
the element to find.
- ord
the ordering to be used to compare elements.
- returns
a
Found
value containing the index corresponding to the element in the sequence, or theInsertionPoint
where the element would be inserted if the element is not in the sequence.
- Definition Classes
- IndexedSeqOps → SeqOps
- See also
scala.collection.SeqOps, method
sorted
- def segmentLength(p: (A) => Boolean, from: Int): Int
Computes the length of the longest segment that starts from some index and whose elements all satisfy some predicate.
Computes the length of the longest segment that starts from some index and whose elements all satisfy some predicate.
- p
the predicate used to test elements.
- from
the index where the search starts.
- returns
the length of the longest segment of this stack starting from index
from
such that every element of the segment satisfies the predicatep
.
- Definition Classes
- SeqOps
- final def segmentLength(p: (A) => Boolean): Int
Computes the length of the longest segment that starts from the first element and whose elements all satisfy some predicate.
Computes the length of the longest segment that starts from the first element and whose elements all satisfy some predicate.
- p
the predicate used to test elements.
- returns
the length of the longest segment of this stack that starts from the first element such that every element of the segment satisfies the predicate
p
.
- Definition Classes
- SeqOps
- final def size: Int
The size of this stack.
The size of this stack.
- returns
the number of elements in this stack.
- Definition Classes
- SeqOps → IterableOnceOps
- final def sizeCompare(that: collection.Iterable[_]): Int
Compares the size of this stack to the size of another
Iterable
.Compares the size of this stack to the size of another
Iterable
.- that
the
Iterable
whose size is compared with this stack's size.- returns
A value
x
wherex < 0 if this.size < that.size x == 0 if this.size == that.size x > 0 if this.size > that.size
The method as implemented here does not call
size
directly; its running time isO(this.size min that.size)
instead ofO(this.size + that.size)
. The method should be overridden if computingsize
is cheap andknownSize
returns-1
.
- Definition Classes
- SeqOps → IterableOps
- final def sizeCompare(otherSize: Int): Int
Compares the size of this stack to a test value.
Compares the size of this stack to a test value.
- otherSize
the test value that gets compared with the size.
- returns
A value
x
wherex < 0 if this.size < otherSize x == 0 if this.size == otherSize x > 0 if this.size > otherSize
The method as implemented here does not call
size
directly; its running time isO(size min otherSize)
instead ofO(size)
. The method should be overridden if computingsize
is cheap andknownSize
returns-1
.
- Definition Classes
- SeqOps → IterableOps
- See also
- final def sizeIs: SizeCompareOps
Returns a value class containing operations for comparing the size of this stack to a test value.
Returns a value class containing operations for comparing the size of this stack to a test value.
These operations are implemented in terms of
sizeCompare(Int)
, and allow the following more readable usages:this.sizeIs < size // this.sizeCompare(size) < 0 this.sizeIs <= size // this.sizeCompare(size) <= 0 this.sizeIs == size // this.sizeCompare(size) == 0 this.sizeIs != size // this.sizeCompare(size) != 0 this.sizeIs >= size // this.sizeCompare(size) >= 0 this.sizeIs > size // this.sizeCompare(size) > 0
- Definition Classes
- IterableOps
- Annotations
- @inline()
- def slice(from: Int, until: Int): Stack[A]
Selects an interval of elements.
Selects an interval of elements. The returned stack is made up of all elements
x
which satisfy the invariant:from <= indexOf(x) < until
- from
the lowest index to include from this stack.
- until
the lowest index to EXCLUDE from this stack.
- returns
a stack containing the elements greater than or equal to index
from
extending up to (but not including) indexuntil
of this stack.
- Definition Classes
- ArrayDequeOps → IterableOps → IterableOnceOps
- def sliceInPlace(start: Int, end: Int): Stack.this.type
Retains the specified slice from this stack and removes the rest.
Retains the specified slice from this stack and removes the rest.
- start
the lowest index to include
- end
the lowest index to exclude
- returns
this stack
- Definition Classes
- Buffer
- def sliding(window: Int, step: Int): Iterator[Stack[A]]
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in
grouped
).Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in
grouped
).The returned iterator will be empty when called on an empty collection. The last element the iterator produces may be smaller than the window size when the original collection isn't exhausted by the window before it and its last element isn't skipped by the step before it.
- step
the distance between the first elements of successive groups
- returns
An iterator producing stacks of size
size
, except the last element (which may be the only element) will be smaller if there are fewer thansize
elements remaining to be grouped.
- Definition Classes
- ArrayDequeOps → IterableOps
List(1, 2, 3, 4, 5).sliding(2, 2) = Iterator(List(1, 2), List(3, 4), List(5))
, List(1, 2, 3, 4, 5, 6).sliding(2, 3) = Iterator(List(1, 2), List(4, 5))
- See also
scala.collection.Iterator, method
sliding
Examples: - def sliding(size: Int): Iterator[Stack[A]]
Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in
grouped
).Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in
grouped
).An empty collection returns an empty iterator, and a non-empty collection containing fewer elements than the window size returns an iterator that will produce the original collection as its only element.
- size
the number of elements per group
- returns
An iterator producing stacks of size
size
, except for a non-empty collection with less thansize
elements, which returns an iterator that produces the source collection itself as its only element.
- Definition Classes
- IterableOps
List().sliding(2) = empty iterator
, List(1).sliding(2) = Iterator(List(1))
, List(1, 2).sliding(2) = Iterator(List(1, 2))
, List(1, 2, 3).sliding(2) = Iterator(List(1, 2), List(2, 3))
- See also
scala.collection.Iterator, method
sliding
Examples: - def sortBy[B](f: (A) => B)(implicit ord: Ordering[B]): Stack[A]
Sorts this stack according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.
Sorts this stack according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.
Note: Even when applied to a view or a lazy collection it will always force the elements.
The sort is stable. That is, elements that are equal (as determined by
ord.compare
) appear in the same order in the sorted sequence as in the original.- B
the target type of the transformation
f
, and the type where the orderingord
is defined.- f
the transformation function mapping elements to some other domain
B
.- ord
the ordering assumed on domain
B
.- returns
a stack consisting of the elements of this stack sorted according to the ordering where
x < y
iford.lt(f(x), f(y))
.
- Definition Classes
- SeqOps
val words = "The quick brown fox jumped over the lazy dog".split(' ') // this works because scala.Ordering will implicitly provide an Ordering[Tuple2[Int, Char]] words.sortBy(x => (x.length, x.head)) res0: Array[String] = Array(The, dog, fox, the, lazy, over, brown, quick, jumped)
- See also
Example: - def sortInPlace[B >: A]()(implicit ord: Ordering[B]): Stack.this.type
Sorts this stack in place according to an Ordering.
Sorts this stack in place according to an Ordering.
- ord
the ordering to be used to compare elements.
- returns
modified input stack sorted according to the ordering
ord
.
- Definition Classes
- IndexedSeqOps
- See also
- def sortInPlaceBy[B](f: (A) => B)(implicit ord: Ordering[B]): Stack.this.type
Sorts this stack in place according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.
Sorts this stack in place according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.
- Definition Classes
- IndexedSeqOps
- See also
- def sortInPlaceWith(lt: (A, A) => Boolean): Stack.this.type
Sorts this stack in place according to a comparison function.
Sorts this stack in place according to a comparison function.
- Definition Classes
- IndexedSeqOps
- See also
- def sortWith(lt: (A, A) => Boolean): Stack[A]
Sorts this stack according to a comparison function.
Sorts this stack according to a comparison function.
Note: Even when applied to a view or a lazy collection it will always force the elements.
The sort is stable. That is, elements that are equal (
lt
returns false for both directions of comparison) appear in the same order in the sorted sequence as in the original.- lt
a predicate that is true if its first argument strictly precedes its second argument in the desired ordering.
- returns
a stack consisting of the elements of this stack sorted according to the comparison function
lt
.
- Definition Classes
- SeqOps
List("Steve", "Bobby", "Tom", "John", "Bob").sortWith((x, y) => x.take(3).compareTo(y.take(3)) < 0) = List("Bobby", "Bob", "John", "Steve", "Tom")
Example: - def sorted[B >: A](implicit ord: Ordering[B]): Stack[A]
Sorts this stack according to an Ordering.
Sorts this stack according to an Ordering.
The sort is stable. That is, elements that are equal (as determined by
ord.compare
) appear in the same order in the sorted sequence as in the original.- ord
the ordering to be used to compare elements.
- returns
a stack consisting of the elements of this stack sorted according to the ordering
ord
.
- Definition Classes
- SeqOps
- See also
scala.math.Ordering Note: Even when applied to a view or a lazy collection it will always force the elements.
- def span(p: (A) => Boolean): (Stack[A], Stack[A])
Splits this stack into a prefix/suffix pair according to a predicate.
Splits this stack into a prefix/suffix pair according to a predicate.
Note:
c span p
is equivalent to (but possibly more efficient than)(c takeWhile p, c dropWhile p)
, provided the evaluation of the predicatep
does not cause any side-effects.- p
the test predicate
- returns
a pair consisting of the longest prefix of this stack whose elements all satisfy
p
, and the rest of this stack.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def splitAt(n: Int): (Stack[A], Stack[A])
Splits this stack into a prefix/suffix pair at a given position.
Splits this stack into a prefix/suffix pair at a given position.
Note:
c splitAt n
is equivalent to (but possibly more efficient than)(c take n, c drop n)
.- n
the position at which to split.
- returns
a pair of stacks consisting of the first
n
elements of this stack, and the other elements.
- Definition Classes
- IterableOps → IterableOnceOps
- def start_+(idx: Int): Int
- Attributes
- protected
- Definition Classes
- ArrayDeque → ArrayDequeOps
- Annotations
- @inline()
- def startsWith[B >: A](that: IterableOnce[B], offset: Int = 0): Boolean
Tests whether this stack contains the given sequence at a given index.
Tests whether this stack contains the given sequence at a given index.
Note: If the both the receiver object
this
and the argumentthat
are infinite sequences this method may not terminate.- that
the sequence to test
- offset
the index where the sequence is searched.
- returns
true
if the sequencethat
is contained in this stack at indexoffset
, otherwisefalse
.
- Definition Classes
- SeqOps
- def stepper[S <: Stepper[_]](implicit shape: StepperShape[A, S]): S with EfficientSplit
Returns a scala.collection.Stepper for the elements of this collection.
Returns a scala.collection.Stepper for the elements of this collection.
The Stepper enables creating a Java stream to operate on the collection, see scala.jdk.StreamConverters. For collections holding primitive values, the Stepper can be used as an iterator which doesn't box the elements.
The implicit scala.collection.StepperShape parameter defines the resulting Stepper type according to the element type of this collection.
- For collections of
Int
,Short
,Byte
orChar
, an scala.collection.IntStepper is returned - For collections of
Double
orFloat
, a scala.collection.DoubleStepper is returned - For collections of
Long
a scala.collection.LongStepper is returned - For any other element type, an scala.collection.AnyStepper is returned
Note that this method is overridden in subclasses and the return type is refined to
S with EfficientSplit
, for example scala.collection.IndexedSeqOps.stepper. For Steppers marked with scala.collection.Stepper.EfficientSplit, the converters in scala.jdk.StreamConverters allow creating parallel streams, whereas bare Steppers can be converted only to sequential streams.- Definition Classes
- ArrayDeque → IndexedSeqOps → IterableOnce
- For collections of
- final def strictOptimizedCollect[B, C2](b: Builder[B, C2], pf: PartialFunction[A, B]): C2
- B
Type of elements of the resulting collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[String]
)- b
Builder to use to build the resulting collection
- pf
Element transformation partial function
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedConcat[B >: A, C2](that: IterableOnce[B], b: Builder[B, C2]): C2
- B
Type of elements of the resulting collections (e.g.
Int
)- C2
Type of the resulting collection (e.g.
List[Int]
)- that
Elements to concatenate to this collection
- b
Builder to use to build the resulting collection
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedFlatMap[B, C2](b: Builder[B, C2], f: (A) => IterableOnce[B]): C2
- B
Type of elements of the resulting collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[String]
)- b
Builder to use to build the resulting collection
- f
Element transformation function
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedFlatten[B, C2](b: Builder[B, C2])(implicit toIterableOnce: (A) => IterableOnce[B]): C2
- B
Type of elements of the resulting collection (e.g.
Int
)- C2
Type of the resulting collection (e.g.
List[Int]
)- b
Builder to use to build the resulting collection
- toIterableOnce
Evidence that
A
can be seen as anIterableOnce[B]
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedMap[B, C2](b: Builder[B, C2], f: (A) => B): C2
- B
Type of elements of the resulting collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[String]
)- b
Builder to use to build the resulting collection
- f
Element transformation function
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- final def strictOptimizedZip[B, C2](that: IterableOnce[B], b: Builder[(A, B), C2]): C2
- B
Type of elements of the second collection (e.g.
String
)- C2
Type of the resulting collection (e.g.
List[(Int, String)]
)- that
Collection to zip with this collection
- b
Builder to use to build the resulting collection
- returns
The resulting collection
- Attributes
- protected[this]
- Definition Classes
- StrictOptimizedIterableOps
- Annotations
- @inline()
- def stringPrefix: String
- Attributes
- protected[this]
- Definition Classes
- Stack → ArrayDeque → IndexedSeq → Buffer → Seq → Iterable
- Annotations
- @nowarn()
- def subtractAll(xs: IterableOnce[A]): Stack.this.type
Removes all elements produced by an iterator from this stack.
Removes all elements produced by an iterator from this stack.
- xs
the iterator producing the elements to remove.
- returns
the stack itself
- Definition Classes
- Shrinkable
- def subtractOne(elem: A): Stack.this.type
Removes a single element from this buffer, at its first occurrence.
Removes a single element from this buffer, at its first occurrence. If the buffer does not contain that element, it is unchanged.
- returns
the buffer itself
- Definition Classes
- ArrayDeque → Buffer → Shrinkable
- def sum[B >: A](implicit num: math.Numeric[B]): B
Sums the elements of this collection.
Sums the elements of this collection.
The default implementation uses
reduce
for a known non-empty collection,foldLeft
otherwise.- B
the result type of the
+
operator.- num
an implicit parameter defining a set of numeric operations which includes the
+
operator to be used in forming the sum.- returns
the sum of all elements of this stack with respect to the
+
operator innum
.
- Definition Classes
- IterableOnceOps
- final def synchronized[T0](arg0: => T0): T0
Executes the code in
body
with an exclusive lock onthis
.Executes the code in
body
with an exclusive lock onthis
.- returns
the result of
body
- Definition Classes
- AnyRef
- def tail: Stack[A]
The rest of the collection without its first element.
The rest of the collection without its first element.
- Definition Classes
- IterableOps
- def tails: Iterator[Stack[A]]
Iterates over the tails of this stack.
Iterates over the tails of this stack. The first value will be this stack and the final one will be an empty stack, with the intervening values the results of successive applications of
tail
.- returns
an iterator over all the tails of this stack
- Definition Classes
- IterableOps
List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)
Example: - def take(n: Int): Stack[A]
Selects the first
n
elements.Selects the first
n
elements.- n
the number of elements to take from this stack.
- returns
a stack consisting only of the first
n
elements of this stack, or else the whole stack, if it has less thann
elements. Ifn
is negative, returns an empty stack.
- Definition Classes
- IndexedSeqOps → IterableOps → IterableOnceOps
- def takeInPlace(n: Int): Stack.this.type
Retains the first
n
elements from this stack and removes the rest.Retains the first
n
elements from this stack and removes the rest.- n
the number of elements to retain
- returns
this stack
- Definition Classes
- Buffer
- def takeRight(n: Int): Stack[A]
A collection containing the last
n
elements of this collection.A collection containing the last
n
elements of this collection.Note: Even when applied to a view or a lazy collection it will always force the elements.
- n
the number of elements to take from this stack.
- returns
a stack consisting only of the last
n
elements of this stack, or else the whole stack, if it has less thann
elements. Ifn
is negative, returns an empty stack.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def takeRightInPlace(n: Int): Stack.this.type
Retains the last
n
elements from this stack and removes the rest.Retains the last
n
elements from this stack and removes the rest.- n
the number of elements to retain
- returns
this stack
- Definition Classes
- Buffer
- def takeWhile(p: (A) => Boolean): Stack[A]
Takes longest prefix of elements that satisfy a predicate.
Takes longest prefix of elements that satisfy a predicate.
- p
The predicate used to test elements.
- returns
the longest prefix of this stack whose elements all satisfy the predicate
p
.
- Definition Classes
- IterableOps → IterableOnceOps
- def takeWhileInPlace(p: (A) => Boolean): Stack.this.type
Retains the longest prefix of elements that satisfy a predicate.
- def tapEach[U](f: (A) => U): Stack[A]
Applies a side-effecting function to each element in this collection.
Applies a side-effecting function to each element in this collection. Strict collections will apply
f
to their elements immediately, while lazy collections like Views and LazyLists will only applyf
on each element if and when that element is evaluated, and each time that element is evaluated.- U
the return type of f
- f
a function to apply to each element in this stack
- returns
The same logical collection as this
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
- def to[C1](factory: Factory[A, C1]): C1
Given a collection factory
factory
, converts this stack to the appropriate representation for the current element typeA
.Given a collection factory
factory
, converts this stack to the appropriate representation for the current element typeA
. Example uses:xs.to(List) xs.to(ArrayBuffer) xs.to(BitSet) // for xs: Iterable[Int]
- Definition Classes
- IterableOnceOps
- def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]
Converts this stack to an
Array
.Converts this stack to an
Array
.Implementation note: DO NOT call Array.from from this method.
- B
The type of elements of the result, a supertype of
A
.- returns
This stack as an
Array[B]
.
- Definition Classes
- ArrayDeque → IterableOnceOps
- final def toBuffer[B >: A]: Buffer[B]
Converts this stack to a
Buffer
.Converts this stack to a
Buffer
.- B
The type of elements of the result, a supertype of
A
.- returns
This stack as a
Buffer[B]
.
- Definition Classes
- IterableOnceOps
- Annotations
- @inline()
- def toIndexedSeq: immutable.IndexedSeq[A]
Converts this stack to an
IndexedSeq
.Converts this stack to an
IndexedSeq
.- returns
This stack as an
IndexedSeq[A]
.
- Definition Classes
- IterableOnceOps
- def toList: immutable.List[A]
Converts this stack to a
List
. - def toMap[K, V](implicit ev: <:<[A, (K, V)]): immutable.Map[K, V]
Converts this stack to a
Map
, given an implicit coercion from the stack's type to a key-value tuple.Converts this stack to a
Map
, given an implicit coercion from the stack's type to a key-value tuple.- K
The key type for the resulting map.
- V
The value type for the resulting map.
- ev
An implicit coercion from
A
to[K, V]
.- returns
This stack as a
Map[K, V]
.
- Definition Classes
- IterableOnceOps
- def toSeq: immutable.Seq[A]
- returns
This stack as a
Seq[A]
. This is equivalent toto(Seq)
but might be faster.
- Definition Classes
- IterableOnceOps
- def toSet[B >: A]: immutable.Set[B]
Converts this stack to a
Set
.Converts this stack to a
Set
.- B
The type of elements of the result, a supertype of
A
.- returns
This stack as a
Set[B]
.
- Definition Classes
- IterableOnceOps
- def toString(): String
Creates a String representation of this object.
Creates a String representation of this object. The default representation is platform dependent. On the java platform it is the concatenation of the class name, "@", and the object's hashcode in hexadecimal.
- returns
a String representation of the object.
- def toVector: immutable.Vector[A]
Converts this stack to a
Vector
. - final def top: A
Returns the top element of the stack.
Returns the top element of the stack. This method will not remove the element from the stack. An error is signaled if there is no element on the stack.
- returns
the top element
- Annotations
- @inline()
- Exceptions thrown
NoSuchElementException
if the stack is empty
- def transpose[B](implicit asIterable: (A) => collection.Iterable[B]): Stack[Stack[B]]
Transposes this stack of iterable collections into a stack of stacks.
Transposes this stack of iterable collections into a stack of stacks.
The resulting collection's type will be guided by the static type of stack. For example:
val xs = List( Set(1, 2, 3), Set(4, 5, 6)).transpose // xs == List( // List(1, 4), // List(2, 5), // List(3, 6)) val ys = Vector( List(1, 2, 3), List(4, 5, 6)).transpose // ys == Vector( // Vector(1, 4), // Vector(2, 5), // Vector(3, 6))
Note: Even when applied to a view or a lazy collection it will always force the elements.
- B
the type of the elements of each iterable collection.
- asIterable
an implicit conversion which asserts that the element type of this stack is an
Iterable
.- returns
a two-dimensional stack of stacks which has as nth row the nth column of this stack.
- Definition Classes
- IterableOps
- Exceptions thrown
IllegalArgumentException
if all collections in this stack are not of the same size.
- def trimToSize(): Unit
Trims the capacity of this ArrayDeque's instance to be the current size
Trims the capacity of this ArrayDeque's instance to be the current size
- Definition Classes
- ArrayDeque
- def unapply(a: Int): Option[A]
Tries to extract a
B
from anA
in a pattern matching expression.Tries to extract a
B
from anA
in a pattern matching expression.- Definition Classes
- PartialFunction
- def unlift: PartialFunction[Int, B]
Converts an optional function to a partial function.
Converts an optional function to a partial function.
- Implicit
- This member is added by an implicit conversion from Stack[A] toUnliftOps[Int, B] performed by method UnliftOps in scala.Function1.This conversion will take place only if A is a subclass of Option[B] (A <: Option[B]).
- Definition Classes
- UnliftOps
Unlike Function.unlift, this UnliftOps.unlift method can be used in extractors.
val of: Int => Option[String] = { i => if (i == 2) { Some("matched by an optional function") } else { None } } util.Random.nextInt(4) match { case of.unlift(m) => // Convert an optional function to a pattern println(m) case _ => println("Not matched") }
Example: - def unzip[A1, A2](implicit asPair: (A) => (A1, A2)): (Stack[A1], Stack[A2])
Converts this stack of pairs into two collections of the first and second half of each pair.
Converts this stack of pairs into two collections of the first and second half of each pair.
val xs = `Stack`( (1, "one"), (2, "two"), (3, "three")).unzip // xs == (`Stack`(1, 2, 3), // `Stack`(one, two, three))
- A1
the type of the first half of the element pairs
- A2
the type of the second half of the element pairs
- asPair
an implicit conversion which asserts that the element type of this stack is a pair.
- returns
a pair of stacks, containing the first, respectively second half of each element pair of this stack.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def unzip3[A1, A2, A3](implicit asTriple: (A) => (A1, A2, A3)): (Stack[A1], Stack[A2], Stack[A3])
Converts this stack of triples into three collections of the first, second, and third element of each triple.
Converts this stack of triples into three collections of the first, second, and third element of each triple.
val xs = `Stack`( (1, "one", '1'), (2, "two", '2'), (3, "three", '3')).unzip3 // xs == (`Stack`(1, 2, 3), // `Stack`(one, two, three), // `Stack`(1, 2, 3))
- A1
the type of the first member of the element triples
- A2
the type of the second member of the element triples
- A3
the type of the third member of the element triples
- asTriple
an implicit conversion which asserts that the element type of this stack is a triple.
- returns
a triple of stacks, containing the first, second, respectively third member of each element triple of this stack.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def update(idx: Int, elem: A): Unit
Replaces element at given index with a new value.
Replaces element at given index with a new value.
- idx
the index of the element to replace.
- elem
the new value.
- Definition Classes
- ArrayDeque → SeqOps
- Exceptions thrown
IndexOutOfBoundsException
if the index is not valid.
- def updated[B >: A](index: Int, elem: B): Stack[B]
A copy of this stack with one single replaced element.
A copy of this stack with one single replaced element.
- B
the element type of the returned stack.
- index
the position of the replacement
- elem
the replacing element
- returns
a new stack which is a copy of this stack with the element at position
index
replaced byelem
.
- Definition Classes
- SeqOps
- Exceptions thrown
IndexOutOfBoundsException
ifindex
does not satisfy0 <= index < length
. In case of a lazy collection this exception may be thrown at a later time or not at all (if the end of the collection is never evaluated).
- def view: IndexedSeqView[A]
A view over the elements of this collection.
A view over the elements of this collection.
- Definition Classes
- IndexedSeqOps → SeqOps → IterableOps
- final def wait(): Unit
See https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait--.
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- Note
not specified by SLS as a member of AnyRef
- final def wait(arg0: Long, arg1: Int): Unit
See https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait-long-int-
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- Note
not specified by SLS as a member of AnyRef
- final def wait(arg0: Long): Unit
See https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#wait-long-.
- def withFilter(p: (A) => Boolean): WithFilter[A, [_]Stack[_]]
Creates a non-strict filter of this stack.
Creates a non-strict filter of this stack.
Note: the difference between
c filter p
andc withFilter p
is that the former creates a new collection, whereas the latter only restricts the domain of subsequentmap
,flatMap
,foreach
, andwithFilter
operations.- p
the predicate used to test elements.
- returns
an object of class
WithFilter
, which supportsmap
,flatMap
,foreach
, andwithFilter
operations. All these operations apply to those elements of this stack which satisfy the predicatep
.
- Definition Classes
- IterableOps
- def writeReplace(): AnyRef
- Attributes
- protected[this]
- Definition Classes
- DefaultSerializable
- def zip[B](that: IterableOnce[B]): Stack[(A, B)]
Returns a stack formed from this stack and another iterable collection by combining corresponding elements in pairs.
Returns a stack formed from this stack and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.
- B
the type of the second half of the returned pairs
- that
The iterable providing the second half of each result pair
- returns
a new stack containing pairs consisting of corresponding elements of this stack and
that
. The length of the returned collection is the minimum of the lengths of this stack andthat
.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps
- def zipAll[A1 >: A, B](that: collection.Iterable[B], thisElem: A1, thatElem: B): Stack[(A1, B)]
Returns a stack formed from this stack and another iterable collection by combining corresponding elements in pairs.
Returns a stack formed from this stack and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.
- that
the iterable providing the second half of each result pair
- thisElem
the element to be used to fill up the result if this stack is shorter than
that
.- thatElem
the element to be used to fill up the result if
that
is shorter than this stack.- returns
a new collection of type
That
containing pairs consisting of corresponding elements of this stack andthat
. The length of the returned collection is the maximum of the lengths of this stack andthat
. If this stack is shorter thanthat
,thisElem
values are used to pad the result. Ifthat
is shorter than this stack,thatElem
values are used to pad the result.
- Definition Classes
- IterableOps
- def zipWithIndex: Stack[(A, Int)]
Zips this stack with its indices.
Zips this stack with its indices.
- returns
A new stack containing pairs consisting of all elements of this stack paired with their index. Indices start at
0
.
- Definition Classes
- StrictOptimizedIterableOps → IterableOps → IterableOnceOps
List("a", "b", "c").zipWithIndex == List(("a", 0), ("b", 1), ("c", 2))
Example:
Deprecated Value Members
- final def +=(elem1: A, elem2: A, elems: A*): Stack.this.type
Adds two or more elements to this stack.
Adds two or more elements to this stack.
- elem1
the first element to add.
- elem2
the second element to add.
- elems
the remaining elements to add.
- returns
the stack itself
- Definition Classes
- Growable
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use
++=
akaaddAll
instead of varargs+=
; infix operations with an operand of multiple args will be deprecated
- def -=(elem1: A, elem2: A, elems: A*): Stack.this.type
Removes two or more elements from this stack.
Removes two or more elements from this stack.
- elem1
the first element to remove.
- elem2
the second element to remove.
- elems
the remaining elements to remove.
- returns
the stack itself
- Definition Classes
- Shrinkable
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.3) Use
--=
akasubtractAll
instead of varargs-=
; infix operations with an operand of multiple args will be deprecated
- def /:[B](z: B)(op: (B, A) => B): B
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A])./:(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldLeft instead
- final def /:[B](z: B)(op: (B, A) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use foldLeft instead of /:
- def :\[B](z: B)(op: (A, B) => B): B
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).:\(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldRight instead
- final def :\[B](z: B)(op: (A, B) => B): B
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use foldRight instead of :\
- def aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B
Aggregates the results of applying an operator to subsequent elements.
Aggregates the results of applying an operator to subsequent elements.
Since this method degenerates to
foldLeft
for sequential (non-parallel) collections, where the combining operation is ignored, it is advisable to preferfoldLeft
for that case.For parallel collections, use the
aggregate
method specified byscala.collection.parallel.ParIterableLike
.- B
the result type, produced by
seqop
,combop
, and by this function as a final result.- z
the start value, a neutral element for
seqop
.- seqop
the binary operator used to accumulate the result.
- combop
an associative operator for combining sequential results, unused for sequential collections.
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) For sequential collections, prefer
foldLeft(z)(seqop)
. For parallel collections, useParIterableLike#aggregate
.
- final def append(elems: A*): Stack.this.type
- Definition Classes
- Buffer
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use appendAll instead
- def collectFirst[B](f: PartialFunction[A, B]): Option[B]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).collectFirst(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.collectFirst(...) instead
- def companion: IterableFactory[[_]Stack[_]]
- Definition Classes
- IterableOps
- Annotations
- @deprecated @deprecatedOverriding() @inline()
- Deprecated
(Since version 2.13.0) Use iterableFactory instead
- def copyToBuffer(dest: Buffer[A]): Unit
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).copyToBuffer(dest)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.copyToBuffer(...) instead
- final def copyToBuffer[B >: A](dest: Buffer[B]): Unit
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use
dest ++= coll
instead
- def count(f: (A) => Boolean): Int
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).count(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.count(...) instead
- def exists(f: (A) => Boolean): Boolean
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).exists(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.exists(...) instead
- def filter(f: (A) => Boolean): Iterator[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).filter(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.filter(...) instead
- def find(p: (A) => Boolean): Option[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).find(p)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.find instead
- def flatMap[B](f: (A) => IterableOnce[B]): IterableOnce[B]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).flatMap(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.flatMap instead or consider requiring an Iterable
- def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).fold(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.fold instead
- def foldLeft[B](z: B)(op: (B, A) => B): B
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).foldLeft(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldLeft instead
- def foldRight[B](z: B)(op: (A, B) => B): B
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).foldRight(z)(op)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foldRight instead
- def forall(f: (A) => Boolean): Boolean
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).forall(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.forall(...) instead
- def foreach[U](f: (A) => U): Unit
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).foreach(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.foreach(...) instead
- def formatted(fmtstr: String): String
Returns string formatted according to given
format
string.Returns string formatted according to given
format
string. Format strings are as forString.format
(@see java.lang.String.format).- Implicit
- This member is added by an implicit conversion from Stack[A] toStringFormat[Stack[A]] performed by method StringFormat in scala.Predef.
- Definition Classes
- StringFormat
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.12.16) Use
formatString.format(value)
instead ofvalue.formatted(formatString)
, or use thef""
string interpolator. In Java 15 and later,formatted
resolves to the new method in String which has reversed parameters.
- def hasDefiniteSize: Boolean
Tests whether this stack is known to have a finite size.
Tests whether this stack is known to have a finite size. All strict collections are known to have finite size. For a non-strict collection such as
Stream
, the predicate returnstrue
if all elements have been computed. It returnsfalse
if the stream is not yet evaluated to the end. Non-empty Iterators usually returnfalse
even if they were created from a collection with a known finite size.Note: many collection methods will not work on collections of infinite sizes. The typical failure mode is an infinite loop. These methods always attempt a traversal without checking first that
hasDefiniteSize
returnstrue
. However, checkinghasDefiniteSize
can provide an assurance that size is well-defined and non-termination is not a concern.- returns
true
if this collection is known to have finite size,false
otherwise.
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Check .knownSize instead of .hasDefiniteSize for more actionable information (see scaladoc for details)
- See also
method
knownSize
for a more useful alternative
- def isEmpty: Boolean
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).isEmpty
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.isEmpty instead
- def map[B](f: (A) => B): IterableOnce[B]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).map(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.map instead or consider requiring an Iterable
- def max(implicit ord: math.Ordering[A]): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).max(ord)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.max instead
- def maxBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).maxBy(f)(cmp)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.maxBy(...) instead
- def min(implicit ord: math.Ordering[A]): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).min(ord)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.min instead
- def minBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).minBy(f)(cmp)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.minBy(...) instead
- def mkString: String
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).mkString
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.mkString instead
- def mkString(sep: String): String
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).mkString(sep)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.mkString instead
- def mkString(start: String, sep: String, end: String): String
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).mkString(start, sep, end)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.mkString instead
- def nonEmpty: Boolean
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).nonEmpty
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.nonEmpty instead
- final def prefixLength(p: (A) => Boolean): Int
Returns the length of the longest prefix whose elements all satisfy some predicate.
Returns the length of the longest prefix whose elements all satisfy some predicate.
- p
the predicate used to test elements.
- returns
the length of the longest prefix of this stack such that every element of the segment satisfies the predicate
p
.
- Definition Classes
- SeqOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use segmentLength instead of prefixLength
- final def prepend(elems: A*): Stack.this.type
- Definition Classes
- Buffer
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use prependAll instead
- def product(implicit num: math.Numeric[A]): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).product(num)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.product instead
- def reduce(f: (A, A) => A): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).reduce(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduce(...) instead
- def reduceLeft(f: (A, A) => A): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).reduceLeft(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceLeft(...) instead
- def reduceLeftOption(f: (A, A) => A): Option[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).reduceLeftOption(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceLeftOption(...) instead
- def reduceOption(f: (A, A) => A): Option[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).reduceOption(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceOption(...) instead
- def reduceRight(f: (A, A) => A): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).reduceRight(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceRight(...) instead
- def reduceRightOption(f: (A, A) => A): Option[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).reduceRightOption(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.reduceRightOption(...) instead
- final def repr: Stack[A]
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use coll instead of repr in a collection implementation, use the collection value itself from the outside
- def reverseMap[B](f: (A) => B): Stack[B]
- Definition Classes
- SeqOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .reverseIterator.map(f).to(...) instead of .reverseMap(f)
- def sameElements[B >: A](that: IterableOnce[B]): Boolean
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).sameElements(that)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.sameElements instead
- def seq: Stack.this.type
- Definition Classes
- Iterable
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Iterable.seq always returns the iterable itself
- def size: Int
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).size
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.size instead
- def sum(implicit num: math.Numeric[A]): A
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).sum(num)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.sum instead
- def to[C1](factory: Factory[A, C1]): C1
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).to(factory)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(factory) instead
- def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toArray(arg0)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.toArray
- def toBuffer[B >: A]: Buffer[B]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toBuffer
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(ArrayBuffer) instead
- def toIndexedSeq: collection.IndexedSeq[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toIndexedSeq
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.toIndexedSeq instead
- final def toIterable: collection.Iterable[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toIterable
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Iterable) instead
- final def toIterable: Stack.this.type
- returns
This collection as an
Iterable[A]
. No new collection will be built ifthis
is already anIterable[A]
.
- Definition Classes
- Iterable → IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.7) toIterable is internal and will be made protected; its name is similar to
toList
ortoSeq
, but it doesn't copy non-immutable collections
- def toIterator: Iterator[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toIterator
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator instead
- final def toIterator: Iterator[A]
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator instead of .toIterator
- def toList: immutable.List[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toList
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(List) instead
- def toMap[K, V](implicit ev: <:<[A, (K, V)]): immutable.Map[K, V]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toMap(ev)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.to(Map) instead
- def toSeq: immutable.Seq[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toSeq
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Seq) instead
- def toSet[B >: A]: immutable.Set[B]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toSet
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Set) instead
- def toStream: immutable.Stream[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toStream
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(LazyList) instead
- final def toStream: immutable.Stream[A]
- Definition Classes
- IterableOnceOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .to(LazyList) instead of .toStream
- final def toTraversable: collection.Traversable[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toTraversable
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Iterable) instead
- final def toTraversable: collection.Traversable[A]
Converts this stack to an unspecified Iterable.
Converts this stack to an unspecified Iterable. Will return the same collection if this instance is already Iterable.
- returns
An Iterable containing all elements of this stack.
- Definition Classes
- IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) toTraversable is internal and will be made protected; its name is similar to
toList
ortoSeq
, but it doesn't copy non-immutable collections
- def toVector: immutable.Vector[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).toVector
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use .iterator.to(Vector) instead
- final def transform(f: (A) => A): Stack.this.type
- Definition Classes
- SeqOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use
mapInPlace
on anIndexedSeq
instead
- def trimEnd(n: Int): Unit
Removes the last n elements of this buffer.
Removes the last n elements of this buffer.
- n
the number of elements to remove from the end of this buffer.
- Definition Classes
- Buffer
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.4) use dropRightInPlace instead
- def trimStart(n: Int): Unit
Removes the first n elements of this buffer.
Removes the first n elements of this buffer.
- n
the number of elements to remove from the beginning of this buffer.
- Definition Classes
- Buffer
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.4) use dropInPlace instead
- final def union[B >: A](that: collection.Seq[B]): Stack[B]
Produces a new sequence which contains all elements of this stack and also all elements of a given sequence.
Produces a new sequence which contains all elements of this stack and also all elements of a given sequence.
xs union ys
is equivalent toxs ++ ys
.- B
the element type of the returned stack.
- that
the sequence to add.
- returns
a new collection which contains all elements of this stack followed by all elements of
that
.
- Definition Classes
- SeqOps
- Annotations
- @deprecated @inline()
- Deprecated
(Since version 2.13.0) Use
concat
instead
- def view(from: Int, until: Int): IndexedSeqView[A]
A view over a slice of the elements of this collection.
A view over a slice of the elements of this collection.
- Definition Classes
- IndexedSeqOps → IterableOps
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .view.slice(from, until) instead of .view(from, until)
- def withFilter(f: (A) => Boolean): Iterator[A]
- Implicit
- This member is added by an implicit conversion from Stack[A] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
- Shadowing
- This implicitly inherited member is shadowed by one or more members in this class.
To access this member you can use a type ascription:(stack: IterableOnceExtensionMethods[A]).withFilter(f)
- Definition Classes
- IterableOnceExtensionMethods
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use .iterator.withFilter(...) instead
- def →[B](y: B): (Stack[A], B)
- Implicit
- This member is added by an implicit conversion from Stack[A] toArrowAssoc[Stack[A]] performed by method ArrowAssoc in scala.Predef.This conversion will take place only if A is a subclass of Option[Nothing] (A <: Option[Nothing]).
- Definition Classes
- ArrowAssoc
- Annotations
- @deprecated
- Deprecated
(Since version 2.13.0) Use
->
instead. If you still wish to display it as one character, consider using a font with programming ligatures such as Fira Code.
This is the documentation for the Scala standard library.
Package structure
The scala package contains core types like
Int
,Float
,Array
orOption
which are accessible in all Scala compilation units without explicit qualification or imports.Notable packages include:
scala.collection
and its sub-packages contain Scala's collections frameworkscala.collection.immutable
- Immutable, sequential data-structures such asVector
,List
,Range
,HashMap
orHashSet
scala.collection.mutable
- Mutable, sequential data-structures such asArrayBuffer
,StringBuilder
,HashMap
orHashSet
scala.collection.concurrent
- Mutable, concurrent data-structures such asTrieMap
scala.concurrent
- Primitives for concurrent programming such asFutures
andPromises
scala.io
- Input and output operationsscala.math
- Basic math functions and additional numeric types likeBigInt
andBigDecimal
scala.sys
- Interaction with other processes and the operating systemscala.util.matching
- Regular expressionsOther packages exist. See the complete list on the right.
Additional parts of the standard library are shipped as separate libraries. These include:
scala.reflect
- Scala's reflection API (scala-reflect.jar)scala.xml
- XML parsing, manipulation, and serialization (scala-xml.jar)scala.collection.parallel
- Parallel collections (scala-parallel-collections.jar)scala.util.parsing
- Parser combinators (scala-parser-combinators.jar)scala.swing
- A convenient wrapper around Java's GUI framework called Swing (scala-swing.jar)Automatic imports
Identifiers in the scala package and the
scala.Predef
object are always in scope by default.Some of these identifiers are type aliases provided as shortcuts to commonly used classes. For example,
List
is an alias forscala.collection.immutable.List
.Other aliases refer to classes provided by the underlying platform. For example, on the JVM,
String
is an alias forjava.lang.String
.