Scala runs on...

  • JVM
  • JavaScript in your browser

- with more backends on the way. -

Scala in a Nutshell

click the boxes below to see Scala in action!

Seamless Java Interop

Scala runs on the JVM, so Java and Scala stacks can be freely mixed for totally seamless integration.

Type Inference

So the type system doesn’t feel so static. Don’t work for the type system. Let the type system work for you!

Concurrency & Distribution

Use data-parallel operations on collections, use actors for concurrency and distribution, or futures for asynchronous programming.

class Author(val firstName: String,
    val lastName: String) extends Comparable[Author] {

  override def compareTo(that: Author) = {
    val lastNameComp = this.lastName compareTo that.lastName
    if (lastNameComp != 0) lastNameComp
    else this.firstName compareTo that.firstName

object Author {
  def loadAuthorsFromFile(file: List[Author] = ???
import static scala.collection.JavaConversions.asJavaCollection;

public class App {
    public List<Author> loadAuthorsFromFile(File file) {
        return new ArrayList<Author>(asJavaCollection(

    public void sortAuthors(List<Author> authors) {

    public void displaySortedAuthors(File file) {
        List<Author> authors = loadAuthorsFromFile(file);
        for (Author author : authors) {
                author.lastName() + ", " + author.firstName());

Combine Scala and Java seamlessly

Scala classes are ultimately JVM classes. You can create Java objects, call their methods and inherit from Java classes transparently from Scala. Similarly, Java code can reference Scala classes and objects.

In this example, the Scala class Author implements the Java interface Comparable<T> and works with Java Files. The Java code uses a method from the companion object Author, and accesses fields of the Author class. It also uses JavaConversions to convert between Scala collections and Java collections.

Type inference
scala> class Person(val name: String, val age: Int) {
     |   override def toString = s"$name ($age)"
     | }
defined class Person

scala> def underagePeopleNames(persons: List[Person]) = {
     |   for (person <- persons; if person.age < 18)
     |     yield
     | }
underagePeopleNames: (persons: List[Person])List[String]

scala> def createRandomPeople() = {
     |   val names = List("Alice", "Bob", "Carol",
     |       "Dave", "Eve", "Frank")
     |   for (name <- names) yield {
     |     val age = (Random.nextGaussian()*8 + 20).toInt
     |     new Person(name, age)
     |   }
     | }
createRandomPeople: ()List[Person]

scala> val people = createRandomPeople()
people: List[Person] = List(Alice (16), Bob (16), Carol (19), Dave (18), Eve (26), Frank (11))

scala> underagePeopleNames(people)
res1: List[String] = List(Alice, Bob, Frank)

Let the compiler figure out the types for you

The Scala compiler is smart about static types. Most of the time, you need not tell it the types of your variables. Instead, its powerful type inference will figure them out for you.

In this interactive REPL session (Read-Eval-Print-Loop), we define a class and two functions. You can observe that the compiler infers the result types of the functions automatically, as well as all the intermediate values.

val x = future { someExpensiveComputation() }
val y = future { someOtherExpensiveComputation() }
val z = for (a <- x; b <- y) yield a*b
for (c <- z) println("Result: " + c)
println("Meanwhile, the main thread goes on!")

Go Concurrent or Distributed with Futures & Promises

In Scala, futures and promises can be used to process data asynchronously, making it easier to parallelize or even distribute your application.

In this example, the future{} construct evaluates its argument asynchronously, and returns a handle to the asynchronous result as a Future[Int]. For-comprehensions can be used to register new callbacks (to post new things to do) when the future is completed, i.e., when the computation is finished. And since all this is executed asynchronously, without blocking, the main program thread can continue doing other work in the meantime.


Combine the flexibility of Java-style interfaces with the power of classes. Think principled multiple-inheritance.

Pattern Matching

Think “switch” on steroids. Match against class hierarchies, sequences, and more.

Higher-order functions

Functions are first-class objects. Compose them with guaranteed type safety. Use them anywhere, pass them to anything.

abstract class Spacecraft {
  def engage(): Unit
trait CommandoBridge extends Spacecraft {
  def engage(): Unit = {
    for (_ <- 1 to 3)
  def speedUp(): Unit
trait PulseEngine extends Spacecraft {
  val maxPulse: Int
  var currentPulse: Int = 0
  def speedUp(): Unit = {
    if (currentPulse < maxPulse)
      currentPulse += 1
class StarCruiser extends Spacecraft
                     with CommandoBridge
                     with PulseEngine {
  val maxPulse = 200

Flexibly Combine Interface & Behavior

In Scala, multiple traits can be mixed into a class to combine their interface and their behavior.

Here, a StarCruiser is a Spacecraft with a CommandoBridge that knows how to engage the ship (provided a means to speed up) and a PulseEngine that specifies how to speed up.

Switch on the structure of your data

In Scala, case classes are used to represent structural data types. They implicitly equip the class with meaningful toString, equals and hashCode methods, as well as the ability to be deconstructed with pattern matching.

In this example, we define a small set of case classes that represent binary trees of integers (the generic version is omitted for simplicity here). In inOrder, the match construct chooses the right branch, depending on the type of t, and at the same time deconstructs the arguments of a Node.

Pattern matching
// Define a set of case classes for representing binary trees.
sealed abstract class Tree
case class Node(elem: Int, left: Tree, right: Tree) extends Tree
case object Leaf extends Tree

// Return the in-order traversal sequence of a given tree.
def inOrder(t: Tree): List[Int] = t match {
  case Node(e, l, r) => inOrder(l) ::: List(e) ::: inOrder(r)
  case Leaf          => List()

Go Functional with Higher-Order Functions

In Scala, functions are values, and can be defined as anonymous functions with a concise syntax.

val people: Array[Person]

// Partition `people` into two arrays `minors` and `adults`.
// Use the higher-order function `(_.age < 18)` as a predicate for partitioning.
val (minors, adults) = people partition (_.age < 18)
List<Person> people;

List<Person> minors = new ArrayList<Person>(people.size());
List<Person> adults = new ArrayList<Person>(people.size());
for (Person person : people) {
    if (person.getAge() < 18)

Run Scala in your browser

Scastie is Scala + sbt in your browser! You can use any version of Scala, or even alternate backends such as Dotty, Scala.js, Scala Native, and Typelevel Scala. You can use any published library. You can save and share Scala programs/builds with anybody.

Run Scala code interactively

Scala ecosystem

The Scala Library Index (or Scaladex) is a representation of a map of all published Scala libraries. With Scaladex, a developer can now query more than 175,000 releases of Scala libraries. Scaladex is officially supported by Scala Center.

The Scala Library Index

What’s New


Our MOOCs Now Support The EdX Platform

Tuesday, February 27, 2018

We are thrilled to announce that our 4 main MOOCs are now also available on an Open edX instance managed at EPFL.

The content of the courses remains the same as the ones on Coursera. The differences are that our platform is free to use and doesn’t deliver certificates (official credentials that confirm that you successfully completed a course).

As a reminder, the courses are the following:

  • Functional Programming Principles in Scala: An introduction to functional programming (pure functions, recursion, pattern matching, higher-order functions, immutable data types, type parameters, equational reasoning),
  • Functional Program Design in Scala: A follow-up of the first course, showing how to apply the functional programming style to larger programs. Covers topics such as monads, lazy evaluation, property-based testing, futures and dataflow programming.
  • Parallel Programming: Introduces the fundamentals of parallel programming, from task parallelism to data parallelism,
  • Big Data Analysis with Scala and Spark: Extends the data parallel paradigm to the distributed case (as opposed to shared-memory parallel or sequential collections), using Spark.

Open edX is an open source learning management system that was originally developed by the edX nonprofit.

Our goal is to deliver the courses content in the most accessible way. We hope you will enjoy the learning experience provided by the Open edX platform.

Happy learning!

Twitter Feed

See more tweets, or

Follow Scala on twitter

The Scala language is maintained by

  • Scala Center
  • Lightbend

Scala Center is supported by

EPFL IBM Verizon Goldman Sachs 47 Degrees SAP Twitter Your company