Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class hierarchies for maximum code reuse and extensibility, implement their behavior using higher-order functions. Or anything in-between.

Learn More


Scala began life in 2003, created by Martin Odersky and his research group at EPFL, next to Lake Geneva and the Alps, in Lausanne, Switzerland. Scala has since grown into a mature open source programming language, used by hundreds of thousands of developers, and is developed and maintained by scores of people all over the world.
Download API Docs    

Scala in a Nutshell

 click the boxes below to see Scala in action! 

Seamless Java Interop

Scala runs on the JVM, so Java and Scala stacks can be freely mixed for totally seamless integration.

Type Inference

So the type system doesn’t feel so static. Don’t work for the type system. Let the type system work for you!

& Distribution

Use data-parallel operations on collections, use actors for concurrency and distribution, or futures for asynchronous programming.


Combine the flexibility of Java-style interfaces with the power of classes. Think principled multiple-inheritance.

Pattern Matching

Think “switch” on steroids. Match against class hierarchies, sequences, and more.

Higher-Order Functions

Functions are first-class objects. Compose them with guaranteed type safety. Use them anywhere, pass them to anything.

class Author(val firstName: String,
    val lastName: String) extends Comparable[Author] {

  override def compareTo(that: Author) = {
    val lastNameComp = this.lastName compareTo that.lastName
    if (lastNameComp != 0) lastNameComp
    else this.firstName compareTo that.firstName

object Author {
  def loadAuthorsFromFile(file: java.io.File): List[Author] = ???
import static scala.collection.JavaConversions.asJavaCollection;

public class App {
    public List<Author> loadAuthorsFromFile(File file) {
        return new ArrayList<Author>(asJavaCollection(

    public void sortAuthors(List<Author> authors) {

    public void displaySortedAuthors(File file) {
        List<Author> authors = loadAuthorsFromFile(file);
        for (Author author : authors) {
                author.lastName() + ", " + author.firstName());

Combine Scala and Java seamlessly

Scala classes are ultimately JVM classes. You can create Java objects, call their methods and inherit from Java classes transparently from Scala. Similarly, Java code can reference Scala classes and objects.

In this example, the Scala class Author implements the Java interface Comparable<T> and works with Java Files. The Java code uses a method from the companion object Author, and accesses fields of the Author class. It also uses JavaConversions to convert between Scala collections and Java collections.

Type inference
scala> class Person(val name: String, val age: Int) {
     |   override def toString = s"$name ($age)"
     | }
defined class Person

scala> def underagePeopleNames(persons: List[Person]) = {
     |   for (person <- persons; if person.age < 18)
     |     yield person.name
     | }
underagePeopleNames: (persons: List[Person])List[String]

scala> def createRandomPeople() = {
     |   val names = List("Alice", "Bob", "Carol",
     |       "Dave", "Eve", "Frank")
     |   for (name <- names) yield {
     |     val age = (Random.nextGaussian()*8 + 20).toInt
     |     new Person(name, age)
     |   }
     | }
createRandomPeople: ()List[Person]

scala> val people = createRandomPeople()
people: List[Person] = List(Alice (16), Bob (16), Carol (19), Dave (18), Eve (26), Frank (11))

scala> underagePeopleNames(people)
res1: List[String] = List(Alice, Bob, Frank)

Let the compiler figure out the types for you

The Scala compiler is smart about static types. Most of the time, you need not tell it the types of your variables. Instead, its powerful type inference will figure them out for you.

In this interactive REPL session (Read-Eval-Print-Loop), we define a class and two functions. You can observe that the compiler infers the result types of the functions automatically, as well as all the intermediate values.

val x = future { someExpensiveComputation() }
val y = future { someOtherExpensiveComputation() }
val z = for (a <- x; b <- y) yield a*b
for (c <- z) println("Result: " + c)
println("Meanwhile, the main thread goes on!")

Go Concurrent or Distributed with Futures & Promises

In Scala, futures and promises can be used to process data asynchronously, making it easier to parallelize or even distribute your application.

In this example, the future{} construct evaluates its argument asynchronously, and returns a handle to the asynchronous result as a Future[Int]. For-comprehensions can be used to register new callbacks (to post new things to do) when the future is completed, i.e., when the computation is finished. And since all this is executed asynchronously, without blocking, the main program thread can continue doing other work in the meantime.

abstract class Spacecraft {
  def engage(): Unit
trait CommandoBridge extends Spacecraft {
  def engage(): Unit = {
    for (_ <- 1 to 3)
  def speedUp(): Unit
trait PulseEngine extends Spacecraft {
  val maxPulse: Int
  var currentPulse: Int = 0
  def speedUp(): Unit = {
    if (currentPulse < maxPulse)
      currentPulse += 1
class StarCruiser extends Spacecraft
                     with CommandoBridge
                     with PulseEngine {
  val maxPulse = 200

Flexibly Combine Interface & Behavior

In Scala, multiple traits can be mixed into a class to combine their interface and their behavior.

Here, a StarCruiser is a Spacecraft with a CommandoBridge that knows how to engage the ship (provided a means to speed up) and a PulseEngine that specifies how to speed up.

Pattern matching
// Define a set of case classes for representing binary trees.
sealed abstract class Tree
case class Node(elem: Int, left: Tree, right: Tree) extends Tree
case object Leaf extends Tree

// Return the in-order traversal sequence of a given tree.
def inOrder(t: Tree): List[Int] = t match {
  case Node(e, l, r) => inOrder(l) ::: List(e) ::: inOrder(r)
  case Leaf          => List()

Switch on the structure of your data

In Scala, case classes are used to represent structural data types. They implicitly equip the class with meaningful toString, equals and hashCode methods, as well as the ability to be deconstructed with pattern matching.

In this example, we define a small set of case classes that represent binary trees of integers (the generic version is omitted for simplicity here). In inOrder, the match construct chooses the right branch, depending on the type of t, and at the same time deconstructs the arguments of a Node.

Go Functional with Higher-Order Functions

In Scala, functions are values, and can be defined as anonymous functions with a concise syntax.

val people: Array[Person]

// Partition `people` into two arrays `minors` and `adults`.
// Use the higher-order function `(_.age < 18)` as a predicate for partitioning.
val (minors, adults) = people partition (_.age < 18)
List<Person> people;

List<Person> minors = new ArrayList<Person>(people.size());
List<Person> adults = new ArrayList<Person>(people.size());
for (Person person : people) {
    if (person.getAge() < 18)

In the Scala example on the left, the partition method, available on all collection types (including Array), returns two new collections of the same type. Elements from the original collection are partitioned according to a predicate, which is given as a lambda, i.e., an anonymous function. The _ stands for the parameter to the lambda, i.e., the element that is being tested. This particular lambda can also be written as (x => x.age < 18).

The same program is implemented in Java on the right.

Upcoming Events

See more events or add one to our feed

What's New

date icon Wednesday, October 19, 2016

This week we release the first version of scalajs-bundler, a tool that makes it easier to use npm packages for Scala.js developers. This effort is part of the Scala Center’s initiative to ensure the continuity of the Scala.js project.


Our goal is to make npm dependencies management as easy as JVM dependencies management.

Basically, if your application needs to use an npm package foo, all you have to do is to add to your build a line like the following:

npmDependencies in Compile += "foo" -> "1.0"

And then the usual run and test sbt commands just work.


npm is the most popular JavaScript package registry. How can Scala.js applications benefit from the many libraries published on npm? First, this requires to resolve and download these libraries including their transitive dependencies. Then, the artifacts need to be linked with the Scala.js code. This last step is subtler than it seems because the linking process varies according to the target execution environment. For instance, Node.js expects artifacts to conform to the CommonJS format, whereas this format is not compatible with the execution from a web browser. Furthermore, in the case of web development, when the application is shipped to production it is better to pack all the code and its dependencies into a single bundle whose format is executable by web browsers.

Existing solutions

There are mainly two existing approaches to tackle these challenges: using WebJars or combining two build systems (one for the Scala world and one for the npm world). Both of them require extra efforts from developers or have limitations (you can find more details about that in scalajs-bundler’s documentation).

Current state

scalajs-bundler leverages the CommonJS modules support brought by the latest Scala.js release.

The 0.1 release contains an sbt plugin that:

  • lets developers define their npm dependencies (as in the introductory example),
  • keeps track of transitive npm dependencies between Scala.js artifacts,
  • fetches these dependencies from the npm registry,
  • provides tasks to bundle the application into a single artifact executable by web browsers.

The plugin uses npm and webpack under the hood.

We also provide a second sbt plugin that integrates with sbt-web-scalajs: it basically turns bundles into sbt-web assets.

Future work

There is still some work to do (in particular to shorten the duration of the bundling process in the context of live reloading workflows) and we expect to release a 0.2 version soon, but this first release is already usable, so don’t hesitate to give it a try, we’d love to get your feedback!


date-icon Tuesday, October 18, 2016 announcement
We are happy to announce the availability of Scala 2.12.0-RC2! This RC fixes all reported regressions since 2.11. It will become the final by October...
date-icon Tuesday, October 18, 2016
date-icon Friday, October 14, 2016 blog
One thing that really excites me about being part of the core group of developers working on Dotty is my chance to impact usability. A...
For more, visit our
News archive or Blog

Scala on Twitter

See more tweets, or
Follow Scala on Twitter
white Twitter logo