scala.collection.generic
Type members
Classlikes
Mix-in trait to enable DefaultSerializationProxy for the standard collection types.
Mix-in trait to enable DefaultSerializationProxy for the standard collection types. Depending on the type
it is mixed into, it will dynamically choose iterableFactory
, mapFactory
, sortedIterableFactory
or
sortedMapFactory
for deserialization into the respective CC
type. Override writeReplace
or implement
it directly without using this trait if you need a non-standard factory or if you want to use a different
serialization scheme.
The default serialization proxy for collection implementations.
The default serialization proxy for collection implementations.
This class is final
and requires an extra Factory
object rather than leaving the details of creating a Builder
to an abstract method that could be implemented by a subclass. This is necessary because the factory is needed
for deserializing this class's private state, which happens before any subclass fields would be deserialized. Any
additional state required to create the proper Builder
needs to be captured by the factory
.
A trait which can be used to avoid code duplication when defining extension
methods that should be applicable both to existing Scala collections (i.e.,
types extending Iterable
) as well as other (potentially user-defined)
types that could be converted to a Scala collection type.
A trait which can be used to avoid code duplication when defining extension
methods that should be applicable both to existing Scala collections (i.e.,
types extending Iterable
) as well as other (potentially user-defined)
types that could be converted to a Scala collection type. This trait
makes it possible to treat Scala collections and types that can be implicitly
converted to a collection type uniformly. For example, one can provide
extension methods that work both on collection types and on String
s (String
s
do not extend Iterable
, but can be converted to Iterable
)
IsIterable
provides three members:
1. type member A
, which represents the element type of the target Iterable[A]
1. type member C
, which represents the type returned by transformation operations that preserve the collection’s elements type
1. method apply
, which provides a way to convert between the type we wish to add extension methods to, Repr
, and IterableOps[A, Iterable, C]
.
Usage
One must provide IsIterable
as an implicit parameter type of an implicit
conversion. Its usage is shown below. Our objective in the following example
is to provide a generic extension method mapReduce
to any type that extends
or can be converted to Iterable
. In our example, this includes
String
.
import scala.collection.{Iterable, IterableOps}
import scala.collection.generic.IsIterable
class ExtensionMethods[Repr, I <: IsIterable[Repr]](coll: Repr, it: I) {
def mapReduce[B](mapper: it.A => B)(reducer: (B, B) => B): B = {
val iter = it(coll).iterator
var res = mapper(iter.next())
while (iter.hasNext)
res = reducer(res, mapper(iter.next()))
res
}
}
implicit def withExtensions[Repr](coll: Repr)(implicit it: IsIterable[Repr]): ExtensionMethods[Repr, it.type] =
new ExtensionMethods(coll, it)
// See it in action!
List(1, 2, 3).mapReduce(_ * 2)(_ + _) // res0: Int = 12
"Yeah, well, you know, that's just, like, your opinion, man.".mapReduce(x => 1)(_ + _) // res1: Int = 59
Here, we begin by creating a class ExtensionMethods
which contains our
mapReduce
extension method.
Note that ExtensionMethods
takes a constructor argument coll
of type Repr
, where
Repr
represents (typically) the collection type, and an argument it
of a subtype of IsIterable[Repr]
.
The body of the method starts by converting the coll
argument to an IterableOps
in order to
call the iterator
method on it.
The remaining of the implementation is straightforward.
The withExtensions
implicit conversion makes the mapReduce
operation available
on any type Repr
for which it exists an implicit IsIterable[Repr]
instance.
Note how we keep track of the precise type of the implicit it
argument by using the
it.type
singleton type, rather than the wider IsIterable[Repr]
type. We do that
so that the information carried by the type members A
and C
of the it
argument
is not lost.
When the mapReduce
method is called on some type of which it is not
a member, implicit search is triggered. Because implicit conversion
withExtensions
is generic, it will be applied as long as an implicit
value of type IsIterable[Repr]
can be found. Given that the
IsIterable
companion object contains implicit members that return values of type
IsIterable
, this requirement is typically satisfied, and the chain
of interactions described in the previous paragraph is set into action.
(See the IsIterable
companion object, which contains a precise
specification of the available implicits.)
Note: Currently, it's not possible to combine the implicit conversion and the class with the extension methods into an implicit class due to limitations of type inference.
Implementing IsIterable
for New Types
One must simply provide an implicit value of type IsIterable
specific to the new type, or an implicit conversion which returns an
instance of IsIterable
specific to the new type.
Below is an example of an implementation of the IsIterable
trait
where the Repr
type is Range
.
implicit val rangeRepr: IsIterable[Range] { type A = Int; type C = IndexedSeq[Int] } =
new IsIterable[Range] {
type A = Int
type C = IndexedSeq[Int]
def apply(coll: Range): IterableOps[Int, IndexedSeq, IndexedSeq[Int]] = coll
}
(Note that in practice the IsIterable[Range]
instance is already provided by
the standard library, and it is defined as an IsSeq[Range]
instance)
- Companion:
- object
- Source:
- IsIterable.scala
Type class witnessing that a collection representation type Repr
has
elements of type A
and has a conversion to IterableOnce[A]
.
Type class witnessing that a collection representation type Repr
has
elements of type A
and has a conversion to IterableOnce[A]
.
This type enables simple enrichment of IterableOnce
s with extension
methods which can make full use of the mechanics of the Scala collections
framework in their implementation.
Example usage,
class FilterMapImpl[Repr, I <: IsIterableOnce[Repr]](coll: Repr, it: I) {
final def filterMap[B, That](f: it.A => Option[B])(implicit bf: BuildFrom[Repr, B, That]): That = {
val b = bf.newBuilder(coll)
for(e <- it(coll).iterator) f(e) foreach (b +=)
b.result()
}
}
implicit def filterMap[Repr](coll: Repr)(implicit it: IsIterableOnce[Repr]): FilterMapImpl[Repr, it.type] =
new FilterMapImpl(coll, it)
List(1, 2, 3, 4, 5) filterMap (i => if(i % 2 == 0) Some(i) else None)
// == List(2, 4)
- Companion:
- object
- Source:
- IsIterableOnce.scala
Type class witnessing that a collection type Repr
has keys of type K
, values of type V
and has a conversion to
MapOps[K, V, Iterable, C]
, for some types K
, V
and C
.
Type class witnessing that a collection type Repr
has keys of type K
, values of type V
and has a conversion to
MapOps[K, V, Iterable, C]
, for some types K
, V
and C
.
This type enables simple enrichment of Map
s with extension methods.
- Type parameters:
- Repr
Collection type (e.g.
Map[Int, String]
)
- See also:
- Companion:
- object
- Source:
- IsMap.scala
Type class witnessing that a collection representation type Repr
has
elements of type A
and has a conversion to SeqOps[A, Iterable, C]
, for
some types A
and C
.
Type class witnessing that a collection representation type Repr
has
elements of type A
and has a conversion to SeqOps[A, Iterable, C]
, for
some types A
and C
.
This type enables simple enrichment of Seq
s with extension methods which
can make full use of the mechanics of the Scala collections framework in
their implementation.
- See also:
- Companion:
- object
- Source:
- IsSeq.scala
Deprecated classlikes
This trait represents collection-like objects that can be reduced using a '+' operator.
This trait represents collection-like objects that can be reduced
using a '+' operator. It defines variants of -
and --
as convenience methods in terms of single-element removal -
.
- Type parameters:
- A
the type of the elements of the $coll.
- Repr
the type of the $coll itself
- Deprecated
- Source:
- Subtractable.scala